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Preface

About This Guide

This user guide describes the function and operation of the Spartan®-6 FPGA Integrated 
Endpoint Block for PCI Express® core, including how to design, customize, and 
implement the core. 

Guide Contents
This manual contains these chapters and appendices:

• Chapter 1, Introduction, describes the core and related information, including 
recommended design experience, additional resources, technical support, and 
submitting feedback to Xilinx. 

• Chapter 2, Core Overview, describes the main components of the integrated Endpoint 
block core architecture.

• Chapter 3, Licensing the Core, contains information about licensing the core.

• Chapter 4, Getting Started Example Design, provides instructions for quickly 
generating, simulating, and implementing the example design using the 
demonstration test bench.

• Chapter 5, Generating and Customizing the Core, describes how to use the graphical 
user interface (GUI) to configure the integrated Endpoint block using the 
CORE Generator™ software.

• Chapter 6, Designing with the Core, provides instructions on how to design a device 
using the integrated Endpoint block core.

• Chapter 7, Core Constraints, discusses the required and optional constraints for the 
integrated Endpoint block core.

• Chapter 8, FPGA Configuration, discusses considerations for FPGA configuration 
and PCI Express.

• Chapter 9, Known Restrictions, describes any known restrictions for this core.

• Appendix A, Programmed Input/Output Example Design, describes the 
Programmed Input/Output (PIO) example design for use with the core. 

• Appendix B, Root Port Model Test Bench, describes the test bench environment, 
which provides a test program interface for use with the PIO example design. 

• Appendix C, Migration Considerations, defines the differences in behaviors and 
options between the integrated Endpoint block and Endpoint PIPE core.

• Appendix D, Debugging Designs, provides information on resources available on the 
Xilinx support website, available debug tools, and a step-by-step process for 
debugging designs that use the Spartan-6 FPGA Integrated Endpoint Block for PCI 
Express.

http://www.xilinx.com
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• Appendix E, Managing Receive-Buffer Space for Inbound Completions, provides 
example methods for handling finite receive buffer space for inbound completions 
with regards to the PCI Express Endpoint requirement to advertise infinite 
completion credits.

• Appendix F, Board Design Guidelines, discusses topics related to implementing a 
PCI Express design that uses the Spartan-6 FPGA on a printed circuit board.

• Appendix G, PCIE_A1 Port Descriptions.

• Appendix H, PCIE_A1 Attribute Descriptions.

• Appendix I, PCIE_A1 Timing Parameter Descriptions.

Additional Documentation
These documents are also available for download at: 
http://www.xilinx.com/products/spartan6.

• Spartan-6 Family Overview

This overview outlines the features and product selection of the Spartan-6 family.

• Spartan-6 FPGA Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the 
Spartan-6 family.

• Spartan-6 FPGA Packaging and Pinout Specifications

This specification includes the tables for device/package combinations and maximum 
I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and 
thermal specifications.

• Spartan-6 FPGA SelectIO Resources User Guide

This guide describes the SelectIO™ resources available in all Spartan-6 devices.

• Spartan-6 FPGA Clocking Resources User Guide

This guide describes the clocking resources available in all Spartan-6 devices, 
including the DCMs and the PLLs.

• Spartan-6 FPGA Block RAM Resources User Guide

This guide describes the Spartan-6 device block RAM capabilities. 

• Spartan-6 FPGA Configurable Logic Blocks User Guide

This guide describes the capabilities of the configurable logic blocks (CLBs) available 
in all Spartan-6 devices. 

• Spartan-6 FPGA Memory Controller User Guide

This guide describes the Spartan-6 FPGA memory controller block, a dedicated, 
embedded multi-port memory controller that greatly simplifies interfacing Spartan-6 
FPGAs to the most popular memory standards.

• Spartan-6 FPGA GTP Transceivers User Guide

This guide describes the GTP transceivers available in Spartan-6 LXT FPGAs.

• Spartan-6 FPGA DSP48A1 Slice User Guide

This guide describes the architecture of the DSP48A1 slice in Spartan-6 FPGAs and 
provides configuration examples.

http://www.xilinx.com
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Additional Resources

• Spartan-6 FPGA PCB Designer’s Guide

This guide provides information on PCB design for Spartan-6 devices, with a focus on 
strategies for making design decisions at the PCB and interface level.

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to 
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support/mysupport.htm.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/mysupport.htm
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Chapter 1

Introduction

This chapter introduces the Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® 
core and provides related information including system requirements, recommended 
design experience, additional core resources, technical support, and submitting feedback 
to Xilinx. 

About the Core
The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a reliable, high-
bandwidth, scalable serial interconnect building block for use with the Spartan-6 FPGA 
family. The core instantiates the Spartan-6 FPGA Integrated Endpoint Block for PCI 
Express found in the Spartan-6 family, and supports both Verilog-HDL and VHDL. 

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a 
CORE Generator™ IP core, included in the latest IP Update on the Xilinx IP Center. For 
detailed information about the core, see the Spartan-6 FPGA Integrated Endpoint Block for 
PCI Express product page. For information about licensing options, see Chapter 3, 
Licensing the Core. 

System Requirements

Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux

• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software

• ISE® v12.1 software or later

Check the release notes for the required Service Pack; ISE software Service Packs can be 
downloaded from www.xilinx.com/support/download/index.htm.

http://www.xilinx.com/support/download/index.htm
www.xilinx.com/support/documentation/ipbusinterfacei-o_pci-express_s6pciexpressendpointblock.htm
http://www.xilinx.com
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Recommended Design Experience
Although the Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a fully 
verified solution, the challenge associated with implementing a complete design varies 
depending on the configuration and functionality of the application. For best results, 
previous experience building high-performance, pipelined FPGA designs using Xilinx 
implementation software and User Constraints Files (UCF) is recommended.

Additional Core Resources
For detailed information and updates about the integrated Endpoint block core, see these 
documents:

• LogiCORE™ IP Spartan-6 FPGA Integrated Endpoint Block for PCI Express Data Sheet 

• LogiCORE IP Spartan-6 FPGA Integrated Endpoint Block for PCI Express Release Notes

Additional information and resources related to the PCI Express technology are available 
from the following websites:

• PCI Express at PCI-SIG 

• PCI Express Developer’s Forum 

http://www.pcisig.com/specifications/pciexpress
http://developer.intel.com/technology/pciexpress/devnet
http://www.xilinx.com
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Chapter 2

Core Overview

This chapter describes the main components of the Spartan®-6 FPGA Integrated Endpoint 
Block for PCI Express® core architecture.

Overview
Table 2-1 defines the Spartan-6 FPGA Integrated Endpoint Block for PCI Express solution.

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core internally instantiates 
the Spartan-6 FPGA Integrated Endpoint Block for PCI Express. See Appendix E, 
Managing Receive-Buffer Space for Inbound Completions, Appendix G, PCIE_A1 Port 
Descriptions, and Appendix H, PCIE_A1 Attribute Descriptions, for information about the 
software primitive, PCIE_A1, which represents the hardened-IP integrated Endpoint 
block. The integrated Endpoint block follows the PCI Express Base Specification layering 
model, which consists of the Physical, Data Link, and Transaction Layers. 

Figure 2-1 illustrates the interfaces to the core, as defined below: 

• System (SYS) interface

• PCI Express (PCI_EXP) interface

• Configuration (CFG) interface

• Transaction (TRN) interface

Table 2-1: Product Overview

Product Name
FPGA 

Architecture

User
Interface

Width 

Lane Widths
Supported

Link Speeds 
Supported

PCI Express Base 
Specification 
Compliance

1-lane Integrated 
Endpoint Block

Spartan-6 32 x1 2.5 Gb/s v1.1

http://www.xilinx.com
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The core uses packets to exchange information between the various modules. Packets are 
formed in the Transaction and Data Link Layers to carry information from the transmitting 
component to the receiving component. Necessary information is added to the packet 
being transmitted, which is required to handle the packet at those layers. At the receiving 
end, each layer of the receiving element processes the incoming packet, strips the relevant 
information and forwards the packet to the next layer. 

As a result, the received packets are transformed from their Physical Layer representation 
to their Data Link Layer representation and the Transaction Layer representation.

Protocol Layers
The functions of the protocol layers, as defined by the PCI Express Base Specification, include 
generation and processing of Transaction Layer Packets (TLPs), flow control management, 
initialization, power management, data protection, error checking and retry, physical link 
interface initialization, maintenance and status tracking, serialization, deserialization and 
other circuitry for interface operation. Each layer is defined in the remainder of this 
section.

Transaction Layer
The Transaction Layer is the upper layer of the PCI Express architecture, and its primary 
function is to accept, buffer, and disseminate Transaction Layer packets or TLPs. TLPs 
communicate information through the use of memory, I/O, configuration, and message 
transactions. To maximize the efficiency of communication between devices, the 
Transaction Layer enforces PCI compliant Transaction ordering rules and manages TLP 
buffer space via credit-based flow control.

Data Link Layer
The Data Link Layer acts as an intermediate stage between the Transaction Layer and the 
Physical Layer. Its primary responsibility is to provide a reliable mechanism for the 
exchange of TLPs between two components on a link.

X-Ref Target - Figure 2-1

Figure 2-1: Top-Level Functional Blocks and Interfaces

PCI Express
(PCI_EXP)

System
(SYS)

Transaction
(TRN)

Configuration
(CFG)

PCI
Express
Fabric

User
Logic

Host
Interface

Clock
and
Reset

LogiCORE IP Spartan-6 FPGA 
Integrated Endpoint Block for PCI Express

Spartan-6 FPGA 
Integrated Endpoint

Block for 
PCI Express 
(PCIE_A1)

Transceiver

http://www.xilinx.com
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Protocol Layers

Services provided by the Data Link Layer include data exchange (TLPs), error detection 
and recovery, initialization services and the generation and consumption of Data Link 
Layer Packets (DLLPs). DLLPs are used to transfer information between Data Link Layers 
of two directly connected components on the link. DLLPs convey information such as 
Power Management, Flow Control, and TLP acknowledgments.

Physical Layer
The Physical Layer interfaces the Data Link Layer with signalling technology for link data 
interchange, and is subdivided into the Logical sub-block and the Electrical sub-block. 

• The Logical sub-block is responsible for framing and deframing of TLPs and DLLPs. It 
also implements the Link Training and Status State machine (LTSSM) which handles 
link initialization, training, and maintenance. Scrambling, descrambling and 8B/10B 
encoding and decoding of data is also performed in this sub-block. 

• The Electrical sub-block defines the input and output buffer characteristics that 
interfaces the device to the PCIe® link.

The Physical Layer also supports Lane Polarity Inversion, as indicated in the PCI Express 
Base Specification rev 1.1 requirement.

Configuration Management
The Configuration Management layer maintains the PCI Type0 Endpoint configuration 
space and supports these features: 

• Implements PCI Configuration Space 

• Supports Configuration Space accesses

• Power Management functions

• Implements error reporting and status functionality

• Implements packet processing functions

• Receive

- Configuration Reads and Writes

• Transmit

- Completions with or without data

- TLM Error Messaging

- User Error Messaging

- Power Management Messaging/Handshake

• Implements MSI and INTx interrupt emulation

• Implements the Device Serial Number Capability in the PCIe Extended Capability 
space

http://www.xilinx.com
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PCI Configuration Space
The configuration space consists of three primary parts, illustrated in Table 2-4. These 
include:

• Legacy PCI v3.0 Type 0 Configuration Header

• Legacy Extended Capability Items

• PCIe Capability Item

• Power Management Capability Item

• Message Signaled Interrupt (MSI) Capability Item

• PCIe Extended Capabilities

• Device Serial Number Extended Capability Structure (optional)

The core implements three legacy extended capability items. The remaining legacy 
extended capability space from address 0x6C to 0xFF is reserved. The core returns 
0x00000000 when this address range is read.

The core also optionally implements one PCIe Extended Capability. The remaining PCIe 
Extended Capability space is reserved. If the Device Serial Number Capability is 
implemented, addresses from 0x10C to 0xFFF are reserved; otherwise addresses from 
0x104 to 0xFFF are reserved. The core returns a Completion with Data of 0x00000000 if 
there is a configuration read to addresses in the reserved space range; writes are ignored.

http://www.xilinx.com
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PCI Configuration Space

Table 2-2: PCI Configuration Space Header

31 16 15 0

Device ID Vendor ID 000h

Status Command 004h

Class Code Rev ID 008h

BIST Header Lat Timer Cache Ln 00Ch

Base Address Register 0 010h

Base Address Register 1 014h

Base Address Register 2 018h

Base Address Register 3 01Ch

Base Address Register 4 020h

Base Address Register 5 024h

Cardbus CIS Pointer 028h

Subsystem ID Subsystem Vendor ID 02Ch

Expansion ROM Base Address 030h

Reserved CapPtr 034h

Reserved 038h

Max Lat Min Gnt Intr Pin Intr Line 03Ch

PM Capability NxtCap PM Cap 040h

Data BSE PMCSR 044h

MSI Control NxtCap MSI Cap 048h

Message Address (Lower) 04Ch

Message Address (Upper) 050h

Reserved Message Data 054h

PE Capability NxtCap PE Cap 058h

PCI Express Device Capabilities 05Ch

Device Status Device Control 060h

PCI Express Link Capabilities 064h

Link Status Link Control 068h

Reserved Legacy Configuration
Space (Returns 0x00000000)

06Ch-
0FFh

Optional
Returns 0 if not 
implemented

Next Cap Capability 
Version

 PCI Express Extended 
Capability - DSN

100h

PCI Express Device Serial Number (1st) 104h

PCI Express Device Serial Number (2nd) 108h

Reserved Extended Configuration
Space (Returns Completion with 0x00000000)

10Ch-
FFFh

http://www.xilinx.com


20 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG654 (v3.0) April 19, 2010

Chapter 2: Core Overview

Core Interfaces
The Integrated Endpoint Block for PCI Express core includes top-level signal interfaces 
that have sub-groups for the receive direction, transmit direction, and signals common to 
both directions. 

System Interface
The System (SYS) interface consists of the system reset signal, sys_reset_n, the system clock 
signal, sys_clk, and a hot reset indicator, received_hot_reset, as described in Table 2-3.

The system reset signal is an asynchronous active-Low input. The assertion of sys_reset_n 
causes a hard reset of the entire core. The system input clock must be either 100 MHz or 
125 MHz, as selected in the CORE Generator software GUI. 

PCI Express Interface
The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs. A 
PCI Express lane consists of a pair of transmit differential signals {pci_exp_txp, 
pci_exp_txn} and a pair of receive differential signals {pci_exp_rxp, pci_exp_rxn}. The 
1-lane core supports only Lane 0. Transmit and receive signals of the PCI_EXP interface are 
defined in Table 2-4.

Transaction Interface
The Transaction (TRN) interface provides a mechanism for the user design to generate and 
consume TLPs. The signal descriptions for this interface are provided in Table 2-5, 
Table 2-6, and Table 2-7.

Table 2-3: System Interface Signals

Function Signal Name Direction Description

System Reset sys_reset_n Input Asynchronous, active Low signal.

System Clock sys_clk Input Reference clock: 100 or 125 MHz.

Hot Reset received_hot_reset Output The core received a hot reset.

Table 2-4: PCI Express Interface Signals for the 1-lane Endpoint Core

Lane 
Number

Name Direction Description

0 pci_exp_txp0 Output PCI Express Transmit Positive: Serial Differential 
Output 0 (+)

0 pci_exp_txn0 Output PCI Express Transmit Negative: Serial 
Differential Output 0 (–)

0 pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential 
Input 0 (+)

0 pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential 
Input 0 (-)

http://www.xilinx.com
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Common TRN Interface
Table 2-5 defines the common TRN interface signals.

Table 2-5: Common Transaction Interface Signals

Name Direction Description

trn_clk Output Transaction Clock: Transaction and Configuration interface 
operations are referenced to and synchronous with the rising 
edge of this clock. trn_clk is unavailable when the core 
sys_reset_n is held asserted. trn_clk is guaranteed to be stable at 
the nominal operating frequency only after trn_reset_n is 
deasserted. The trn_clk clock output is a fixed frequency clock 
output. trn_clk does not change frequencies in case of link 
recovery.

• 1-lane Integrated Endpoint Block Frequency: 62.5 MHz

trn_reset_n Output Transaction Reset: Active Low. User logic interacting with the 
Transaction and Configuration interfaces must use trn_reset_n to 
return to its quiescent state. trn_reset_n is deasserted 
synchronously with respect to trn_clk, trn_reset_n is asserted 
asynchronously with sys_reset_n assertion. The trn_reset_n 
signal is asserted for core in-band reset events like Hot Reset or 
Link Disable.

trn_lnk_up_n Output Transaction Link Up: Active Low. Transaction link-up is asserted 
when the core and the connected upstream link partner port are 
ready and able to exchange data packets. Transaction link-up is 
deasserted when the core and link partner are attempting to 
establish communication, or when communication with the link 
partner is lost due to errors on the transmission channel. 
trn_lnk_up_n is also deasserted when the core is driven to Hot 
Reset or Link Disable states by the link partner, and all TLPs 
stored in the core are lost.

trn_fc_sel[2:0] Input Flow Control Informational Select: Selects the type of flow 
control information presented on the trn_fc_* signals. Possible 
values:
000 == receive buffer available space
001 == receive credits granted to the link partner
010 == receive credits consumed
100 == transmit user credits available
101 == transmit credit limit
110 == transmit credits consumed

trn_fc_ph[7:0] Output Posted Header Flow Control Credits: The number of Posted 
Header FC credits for the selected flow control type

trn_fc_pd[11:0] Output Posted Data Flow Control Credits: The number of Posted Data 
FC credits for the selected flow control type.

trn_fc_nph[7:0] Output Non-Posted Header Flow Control Credits: The number of Non-
Posted Header FC credits for the selected flow control type.

trn_fc_npd[11:0] Output Non-Posted Data Flow Control Credits: The number of Non-
Posted Data FC credits for the selected flow control type.

trn_fc_cplh[7:0] Output Completion Header Flow Control Credits: The number of 
Completion Header FC credits for the selected flow control type.

trn_fc_cpld[11:0] Output Completion Data Flow Control Credits: The number of 
Completion Data FC credits for the selected flow control type. 

http://www.xilinx.com
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Transmit TRN Interface
Table 2-6 defines the transmit (Tx) TRN interface signals.

Table 2-6: Transaction Transmit Interface Signals 

Name Direction Description

trn_tsof_n Input Transmit Start-of-Frame (SOF): Active Low. Signals the 
start of a packet. Valid only along with assertion of 
trn_tsrc_rdy_n. 

trn_teof_n Input Transmit End-of-Frame (EOF): Active Low. Signals the 
end of a packet. Valid only along with assertion of 
trn_tsrc_rdy_n.

trn_td[31:0] Input Transmit Data: Packet data to be transmitted.

trn_tsrc_rdy_n Input Transmit Source Ready: Active Low. Indicates that the 
user application is presenting valid data on trn_td[31:0].

trn_tdst_rdy_n Output Transmit Destination Ready: Active Low. Indicates that 
the core is ready to accept data on trn_td[31:0]. The 
simultaneous assertion of trn_tsrc_rdy_n and 
trn_tdst_rdy_n marks the successful transfer of one data 
beat on trn_td[31:0]. 

trn_tsrc_dsc_n Input Transmit Source Discontinue: Active Low. Can be 
asserted any time starting on the first cycle after SOF to 
EOF, inclusive.

trn_tbuf_av[5:0] Output Transmit Buffers Available: Indicates the number of 
transmit buffers available in the core. Each free transmit 
buffer can accommodate one TLP up to the supported 
Maximum Payload Size. Maximum number of Transmit 
buffers is determined by the Supported Maximum 
Payload Size and block RAM configuration selected.

trn_terr_drop_n Output Transmit Error Drop: Active Low. Indicates that the core 
discarded a packet because of a length violation or, when 
streaming, data was not presented on consecutive clock 
cycles. Length violations include packets longer than 
supported.

trn_tstr_n Input Transmit Streamed: Active Low. Indicates a packet is 
presented on consecutive clock cycles and transmission 
on the link can begin before the entire packet has been 
written to the core. Commonly referred to as transmit cut-
through mode.

trn_tcfg_req_n Output Transmit Configuration Request: Active Low. Asserted 
when the core is ready to transmit a Configuration 
Completion or other internally-generated TLP.

http://www.xilinx.com
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Receive TRN Interface
Table 2-7 defines the receive (RX) TRN interface signals.

trn_tcfg_gnt_n Input Transmit Configuration Grant: Active Low. Asserted by 
the user application in response to trn_tcfg_req_n, to 
allow the core to transmit an internally generated TLP. 
Holding trn_tcfg_gnt_n deasserted after trn_tcfg_req_n 
allows user-initiated TLPs to be given higher priority of 
transmission over core generated TLPs. trn_tcfg_req_n is 
asserted once for each internally generated packet. It 
cannot be deasserted immediately following 
trn_cfg_gnt_n if there are no transmit buffers available. If 
the user does not wish to alter the prioritization of the 
transmission of internally generated TLPs, this signal can 
be continuously asserted.

trn_terrfwd_n Input Transmit Error Forward: Active Low. This input marks 
the current packet in progress as error-poisoned. It can be 
asserted any time between SOF and EOF, inclusive. 
trn_terrfwd_n must not be asserted if trn_tstr_n is 
asserted.

Table 2-6: Transaction Transmit Interface Signals  (Cont’d)

Name Direction Description

Table 2-7: Receive Transaction Interface Signals

Name Direction Description

trn_rsof_n Output Receive Start-of-Frame (SOF): Active Low. 
Signals the start of a packet. Valid only if 
trn_rsrc_rdy_n is also asserted.

trn_reof_n Output Receive End-of-Frame (EOF): Active Low. 
Signals the end of a packet. Valid only if 
trn_rsrc_rdy_n is also asserted.

trn_rd[31:0] Output Receive Data: Packet data being received. Valid 
only if trn_rsrc_rdy_n is also asserted.

trn_rerrfwd_n Output Receive Error Forward: Active Low. Marks the 
packet in progress as error poisoned. Asserted by 
the core for the entire length of the packet. 

trn_rsrc_rdy_n Output Receive Source Ready: Active Low. Indicates the 
core is presenting valid data on trn_rd[31:0]

trn_rdst_rdy_n Input Receive Destination Ready: Active Low. 
Indicates the user application is ready to accept 
data on trn_rd[31:0]. The simultaneous assertion 
of trn_rsrc_rdy_n and trn_rdst_rdy_n marks the 
successful transfer of one data beat on 
trn_td[31:0]. 

trn_rsrc_dsc_n Output Receive Source Discontinue: Active Low. 
Indicates the core is aborting the current packet. 
Asserted when the physical link is going into 
reset. 

http://www.xilinx.com
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Configuration Interface
The Configuration (CFG) interface enables the user design to inspect the state of the 
Endpoint for PCIe configuration space. The user provides a 10-bit configuration address, 
which selects one of the 1024 configuration space double word (DWORD) registers. The 
endpoint returns the state of the selected register over the 32-bit data output port. Table 2-8 
defines the Configuration interface signals. See Design with Configuration Space Registers 
and Configuration Interface, page 87 for usage.

trn_rnp_ok_n Input Receive Non-Posted OK: Active Low. The user 
application asserts this signal when it is ready to 
accept a Non-Posted Request TLP. trn_rnp_ok_n 
must be deasserted when the user application 
cannot process received Non-Posted TLPs, so 
that these can be buffered within the core's 
receive queue. In this case, Posted and 
Completion TLPs received after the Non-Posted 
TLPs will bypass the blocked Non-Posted TLPs.

When the user application approaches a state 
where it is unable to service Non-Posted 
Requests, it must deassert trn_rnp_ok_n one 
clock cycle before the core presents EOF of the 
next-to-last Non-Posted TLP the user application 
can accept.

trn_rbar_hit_n[6:0] Output Receive BAR Hit: Active Low. Indicates BAR(s) 
targeted by the current receive transaction. 
Asserted throughout the packet, from trn_rsof_n 
to trn_reof_n.

• trn_rbar_hit_n[0] => BAR0
• trn_rbar_hit_n[1] => BAR1
• trn_rbar_hit_n[2] => BAR2
• trn_rbar_hit_n[3] => BAR3
• trn_rbar_hit_n[4] => BAR4
• trn_rbar_hit_n[5] => BAR5
• trn_rbar_hit_n[6] => Expansion ROM 

Address. 

If two BARs are configured into a single 64-bit 
address, both corresponding trn_rbar_hit_n bits 
are asserted.

Table 2-7: Receive Transaction Interface Signals (Cont’d)

Name Direction Description
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Table 2-8: Configuration Interface Signals

Name Direction Description

cfg_do[31:0] Output Configuration Data Out: A 32-bit data output port 
used to obtain read data from the configuration 
space inside the core. 

cfg_rd_wr_done_n Output Configuration Read Write Done: Active-Low, read-
write done signal indicates a successful completion 
of the user configuration register access operation. 

• For a user configuration register read operation, 
the signal validates the cfg_do[31:0] data-bus 
value. 

• Writes to the configuration space are not 
supported.

cfg_dwaddr[9:0] Input Configuration DWORD Address: A 10-bit address 
input port used to provide a configuration register 
DWORD address during configuration register 
accesses.

cfg_rd_en_n Input Configuration Read Enable: Active Low read-
enable for configuration register access.

Note: cfg_rd_en_n must be asserted for no more 
than 1 trn_clk cycle for each access.

cfg_interrupt_n Input Configuration Interrupt: Active-Low interrupt 
request signal. The user application can assert this 
to cause the selected interrupt message type to be 
transmitted by the core. The signal should be held 
Low until cfg_interrupt_rdy_n is asserted.

cfg_interrupt_rdy_n Output Configuration Interrupt Ready: Active-Low 
interrupt grant signal. The simultaneous assertion 
of cfg_interrupt_rdy_n and cfg_interrupt_n 
indicates that the core has successfully transmitted 
the requested interrupt message.

cfg_interrupt_assert_n Input Configuration Legacy Interrupt Assert/Deassert 
Select: Selects between Assert and Deassert 
messages for Legacy interrupts when 
cfg_interrupt_n is asserted. Not used for MSI 
interrupts.
Value Message Type

0 Assert

1 Deassert

http://www.xilinx.com
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cfg_interrupt_di[7:0] Input Configuration Interrupt Data In: For Message 
Signaling Interrupts (MSI), the portion of the 
Message Data that the endpoint must drive to 
indicate MSI vector number, if Multi-Vector 
Interrupts are enabled. The value indicated by 
cfg_interrupt_mmenable[2:0] determines the 
number of lower-order bits of Message Data that 
the endpoint provides; the remaining upper bits of 
cfg_interrupt_di[7:0] are not used. 

For Single-Vector Interrupts, cfg_interrupt_di[7:0] 
is not used. For Legacy interrupt messages 
(Assert_INTx, Deassert_INTx), this list defines the 
type of message to be sent: 

Value Legacy Interrupt

00h INTA

01h INTB

02h INTC

03h INTD

cfg_interrupt_do[7:0] Output Configuration Interrupt Data Out: The value of the 
lowest eight bits of the Message Data field in the 
endpoint's MSI capability structure. This value is 
not used and is provided for informational 
purposes and backwards compatibility.

cfg_interrupt_mmenable[2:0] Output Configuration Interrupt Multiple Message Enable: 
This is the value of the Multiple Message Enable 
field and defines the number of vectors the system 
allows for multi-vector MSI. Values range from 
000b to 101b. A value of 000b indicates that single 
vector MSI is enabled, while other values indicate 
the number of lower-order bits that can be used for 
cfg_interrupt_di[7:0].

cfg_interrupt_mmenable[2:0] values:

• 000b, 0 bits
• 001b, 1 bit
• 010b, 2 bits
• 011b, 3 bits
• 100b, 4 bits
• 101b, 5 bits

cfg_interrupt_msienable Output Configuration Interrupt MSI Enabled: Indicates 
that the Message Signaling Interrupt (MSI) 
messaging is enabled. If 0, then only Legacy (INTx) 
interrupts can be sent. If 1, only MSI interrupts can 
be sent.

Table 2-8: Configuration Interface Signals (Cont’d)

Name Direction Description
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cfg_bus_number[7:0] Output Configuration Bus Number: Provides the assigned 
bus number for the device. The user application 
must use this information in the Bus Number field 
of outgoing TLP requests. Default value after reset 
is 00h. Refreshed whenever a Type 0 Configuration 
Write packet is received.

cfg_device_number[4:0] Output Configuration Device Number: Provides the 
assigned device number for the device. The user 
application must use this information in the Device 
Number field of outgoing TLP requests. Default 
value after reset is 00000b. Refreshed whenever a 
Type 0 Configuration Write packet is received.

cfg_function_number[2:0] Output Configuration Function Number: Provides the 
function number for the device. The user 
application must use this information in the 
Function Number field of outgoing TLP request. 
Function number is hardwired to 000b.

cfg_status[15:0] Output Configuration Status: Status register from the 
Configuration Space Header.

cfg_command[15:0] Output Configuration Command: Command register from 
the Configuration Space Header.

cfg_dstatus[15:0] Output Configuration Device Status: Device Status register 
from the PCI Express Extended Capability 
Structure.

cfg_dcommand[15:0] Output Configuration Device Command: Device Control 
register from the PCI Express Extended Capability 
Structure.

cfg_lstatus[15:0] Output Configuration Link Status: Link Status register 
from the PCI Express Extended Capability 
Structure.

cfg_lcommand[15:0] Output Configuration Link Command: Link Control 
register from the PCI Express Extended Capability 
Structure.

cfg_to_turnoff_n Output Configuration To Turnoff: Active Low. This output 
notifies the user that a PME_TURN_Off message 
has been received and the CMM will start polling 
the cfg_turnoff_ok_n input coming in from the user. 
After cfg_turnoff_ok_n is asserted, CMM sends a 
PME_To_Ack message to the upstream device.

cfg_turnoff_ok_n Input Configuration Turnoff OK: Active Low. The user 
application can assert this to notify the integrated 
Endpoint block core that it is safe to turn the power 
off.

Table 2-8: Configuration Interface Signals (Cont’d)

Name Direction Description
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Error Reporting Signals
Table 2-9 defines the user application error-reporting signals. 

cfg_pm_wake_n Input Configuration Power Management Wake: A one-
clock cycle active Low assertion signals the core to 
generate and send a Power Management Wake 
Event (PM_PME) Message TLP to the upstream link 
partner. 

Note: The user is required to assert this input only 
under stable link conditions as reported on the 
cfg_pcie_link_state[2:0] bus. Assertion of this signal 
when the PCI Express Link is in transition results in 
incorrect behavior on the PCI Express Link.

cfg_pcie_link_state_n[2:0] Output PCI Express Link State: This encoded bus reports 
the PCIe Link State Information to the user.

• 110b - PCI Express Link State is "L0"
• 101b - PCI Express Link State is "L0s"
• 011b - PCI Express Link State is "L1"
• 111b - PCI Express Link State is "in transition"

cfg_trn_pending_n Input User Transaction Pending: If asserted, sets the 
Transactions Pending bit in the Device Status 
register. 

Note: The user is required to assert this input if the 
user application has not received a completion to an 
upstream request. Active Low.

cfg_dsn[63:0] Input Configuration Device Serial Number: Serial 
Number register fields of the Device Serial Number 
extended capability. Not used if DSN capability is 
disabled.

cfg_ltssm_state[4:0] Output LTSSM State: Indicates the current state of the Link 
Training and Status State Machine. For state 
encodings, see CFGLTSSMSTATE in Table G-10, 
page 220.

Table 2-8: Configuration Interface Signals (Cont’d)

Name Direction Description

Table 2-9: User Application Error-Reporting Signals 

Port Name Direction Description

cfg_err_ecrc_n Input ECRC Error Report: Active Low. The user can 
assert this signal to report an ECRC error (end-to-
end CRC). 

cfg_err_ur_n Input Configuration Error Unsupported Request: 
Active Low. The user can assert this signal to 
report that an unsupported request was received. 
This signal is ignored if cfg_err_cpl_rdy_n is 
deasserted.
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cfg_err_cpl_timeout_n Input Configuration Error Completion Timeout: Active 
Low. The user can assert this signal to report a 
completion timed out.

Note: The user should assert this signal only if the 
device power state is D0. Asserting this signal in 
non-D0 device power states might result in an 
incorrect operation on the PCIe link. For 
additional information, see the PCI Express Base 
Specification, Rev.1.1, Section 5.3.1.2.

cfg_err_cpl_abort_n Input Configuration Error Completion Aborted: Active 
Low. The user can assert this signal to report that 
a completion was aborted. This signal is ignored 
if cfg_err_cpl_rdy_n is deasserted.

cfg_err_posted_n Input Configuration Error Posted: Active Low. This 
signal is used to further qualify any of the 
cfg_err_* input signals. When this input is 
asserted concurrently with one of the other 
signals, it indicates that the transaction which 
caused the error was a posted transaction. 

cfg_err_cor_n Input Configuration Error Correctable Error: Active 
Low. The user can assert this signal to report that 
a correctable error was detected.

cfg_err_tlp_cpl_header[47:0] Input Configuration Error TLP Completion Header: 
Accepts the header information from the user 
when an error is signaled. This information is 
required so that the core can issue a correct 
completion, if required. 

This information should be extracted from the 
received error TLP and presented in the indicated 
format:

[47:41] Lower Address

[40:29] Byte Count

[28:26] TC

[25:24] Attr

[23:8] Requester ID

[7:0] Tag

Table 2-9: User Application Error-Reporting Signals  (Cont’d)

Port Name Direction Description
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cfg_err_cpl_rdy_n Output Configuration Error Completion Ready: Active 
Low. When asserted, this signal indicates that the 
core can accept assertions on cfg_err_ur_n and 
cfg_err_cpl_abort_n for Non-Posted transactions. 
Assertions on cfg_err_ur_n and 
cfg_err_cpl_abort_n are ignored when 
cfg_err_cpl_rdy_n is deasserted.

cfg_err_locked_n Input Configuration Error Locked: Active Low. This 
signal is used to further qualify any of the 
cfg_err_* input signals. When this input is 
asserted concurrently with one of the other 
signals, it indicates that the transaction that 
caused the error was a locked transaction. 

This signal is intended to be used in Legacy 
mode. If the user needs to signal an unsupported 
request or an aborted completion for a locked 
transaction, this signal can be used to return a 
Completion Locked with UR or CA status.

Note: When not in Legacy mode, the core 
automatically returns a Completion Locked, if 
appropriate.

Table 2-9: User Application Error-Reporting Signals  (Cont’d)

Port Name Direction Description
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Licensing the Core

This version of the Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® core 
does not require a license key. Previous versions of the core released in ISE® v11.2 and 
earlier required a license key. Refer to the corresponding version of this User Guide for 
information on obtaining a license key. The Spartan-6 FPGA Integrated Endpoint Block for 
PCI Express core is provided under the terms of the Xilinx End User Agreement.

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
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Getting Started Example Design 

This chapter provides an overview of the Spartan®-6 FPGA Integrated Endpoint Block for 
PCI Express® example design and instructions for generating the core. It also includes 
information about simulating and implementing the example design using the provided 
demonstration test bench. 

Overview
The example simulation design consists of two discrete parts:

• The Root Port Model, a test bench that generates, consumes, and checks PCI Express 
bus traffic.

• The Programmed Input/Output (PIO) example design, a completer application for 
PCI Express. The PIO example design responds to Read and Write requests to its 
memory space and can be synthesized for testing in hardware.

Simulation Design Overview
For the simulation design, transactions are sent from the Root Port Model to the integrated 
Endpoint block core and processed by the PIO example design. Figure 4-1 illustrates the 
simulation design provided with the integrated Endpoint block core. For more information 
about the Root Port Model, see , Root Port Model Test Bench.
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X-Ref Target - Figure 4-1

Figure 4-1: Simulation Example Design Block Diagram
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Implementation Design Overview
The implementation design consists of a simple PIO example that can accept read and 
write transactions and respond to requests, as illustrated in Figure 4-2. Source code for the 
example is provided with the core. For more information about the PIO example design, 
see Appendix A, Programmed Input/Output Example Design.

Example Design Elements
The PIO example design elements include:

• Core wrapper

• An example Verilog HDL or VHDL wrapper (instantiates the cores and example 
design)

• A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Xilinx ISE® v12.1 software and these 
simulators:

• Mentor Graphics ModelSim v6.5c

• Cadence Incisive Enterprise Simulator (IES) 9.2

• Synopsys VCS and VCS MX 2009.12

• ISE Simulator (ISim)

Note: The VHDL example design supports only ModelSim.

X-Ref Target - Figure 4-2

Figure 4-2: Implementation Example Design Block Diagram
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Generating the Core
To generate a core using the default values in the CORE Generator software GUI, follow 
these steps: 

1. Start the CORE Generator tool. 

For help starting and using the CORE Generator tool, see the Xilinx CORE Generator 
Guide, available from the ISE Design Suite web page.

2. Choose File > New Project.

3. Enter a project name and location, then click OK. <project_dir> is used in this 
example. The Project Options dialog box appears.

X-Ref Target - Figure 4-3

Figure 4-3: New Project Dialog Box

X-Ref Target - Figure 4-4

Figure 4-4: Project Options

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 37
UG654 (v3.0) April 19, 2010

Generating the Core

4. Set the project options:

From the Part tab, select these options: 

• Family: Spartan6

• Device: xc6slx45t

• Package: fgg484

• Speed Grade: -2

Note: If an unsupported silicon device is selected, the core is dimmed (unavailable) in the list of 
cores.

From the Generation tab, select these parameters, and then click OK.

• Design Entry. Select Verilog or VHDL.

• Vendor. Select Synplicity or ISE (for XST).

5. Locate the core in the selection tree under Standard Bus Interfaces/PCI Express; 
then double-click the core name to display the integrated Endpoint block main screen.

6. In the Component Name field, enter a name for the core. <component_name> is used 
in this example. 

7. Click Finish to generate the core using the default parameters. The core and its 
supporting files, including the PIO example design and Root Port Model test bench, 
are generated in the project directory. 

For detailed information about the example design files and directories see Directory 
Structure and File Contents, page 44. See the README file.

X-Ref Target - Figure 4-5

Figure 4-5: Integrated Endpoint Block Main Screen
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Simulating the Example Design
The example design provides a quick way to simulate and observe the behavior of the core. 
The simulation environment provided with the integrated Endpoint block core performs 
simple memory access tests on the PIO example design. Transactions are generated by the 
Root Port Model and responded to by the PIO example design.

• PCI Express Transaction Layer Packets (TLPs) are generated by the test bench 
transmit user application (pci_exp_usrapp_tx). As it transmits TLPs, it also 
generates a log file, tx.dat.

• PCI Express TLPs are received by the test bench receive user application 
(pci_exp_usrapp_rx). As the user application receives the TLPs, it generates a log 
file, rx.dat. 

For more information about the test bench, see , Root Port Model Test Bench.

Setting up for Simulation
To run the functional simulation the Xilinx Simulation Libraries must be compiled for the 
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE 
Synthesis and Verification Design Guide, and the Xilinx ISE Software Manuals and Help. 
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

Spartan-6 device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant 
simulator.

Note for Cadence IUS users: The work construct must be manually inserted into the 
CDS.LIB file as shown below.

DEFINE WORK WORK

Running the Simulation
The simulation scripts provided with the example design support pre-implementation 
(RTL) simulation. The existing test bench can be used to simulate with a 
post-implementation version of the example design.

The pre-implementation simulation consists of these components:

• Verilog or VHDL model of the test bench

• Verilog or VHDL RTL example design

• The Verilog or VHDL model of the Integrated Endpoint Block for PCI Express 

1. To run the simulation, go to this directory: 

<project_dir>/<component_name>/simulation/functional

2. Run the script that corresponds to the user simulation tool using one of these: 

• ModelSim: vsim -do simulate_mti.do

• VCS: >./simulate_vcs.sh

• IUS: > ./simulate_ncsim.sh

• ISIM (UNIX): > ./simulate_isim.sh 

• ISIM (Windows): > simulate_isim.bat 

http://www.xilinx.com
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Implementing the Example Design
After generating the core, the netlists and the example design can be processed using the 
Xilinx implementation tools. The generated output files include scripts to assist in running 
the Xilinx software.

To implement the example design:

Open a command prompt or terminal window and type:

Windows

ms-dos> cd <project_dir>\<component_name>\implement
ms-dos> implement.bat

Linux

% cd <project_dir>/<component_name>/implement
% ./implement.sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the 
example design, and then generates a post-par simulation model for use in timing 
simulation. The resulting files are placed in the results directory and execute these 
processes: 

1. Removes data files from the previous runs. 

2. Synthesizes the example design using XST or Synplify.

3. ngdbuild. Builds a Xilinx design database for the example design. 

- Inputs:

Part-Package-Speed Grade selection:
For example, XC6SLX45T-FGG484-1 

Example design UCF:
xilinx_pcie_1_lane_ep_<device>.ucf

4. map: Maps design to the selected FPGA using the constraints provided.

5. par: Places cells onto FPGA resources and routes connectivity.

6. trce: Performs static timing analysis on design using constraints specified.

7. netgen: Generates a logical Verilog HDL or VHDL representation of the design and 
an SDF file for post-layout verification.

8. bitgen: Generates a bitstream file for programming the FPGA.

These FPGA implementation related files are generated in the results directory:

• routed.bit
FPGA configuration information.

• routed.v[hd] 
Verilog or VHDL functional Model.

• routed.sdf
Timing model Standard Delay File.

• mapped.mrp 
Xilinx map report. 

• routed.par
Xilinx place and route report. 

• routed.twr
Xilinx timing analysis report. 

http://www.xilinx.com
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The script file starts from Verilog or VHDL source files and results in a bitstream file. 

Users can also use the ISE Project Navigator GUI tool to implement designs. An example 
ISE software project file is provided when the core is generated.

Using the ISE Project Navigator GUI Tool
To build a core and PIO example design with the ISE Project Navigator GUI tool:

1. Start the ISE Project Navigator GUI tool.

For help starting and using the ISE Project Navigator tool, see the ISE Project Navigator 
Guide, available from the ISE tool documentation web page 
(http://www.xilinx.com/support/documentation/dt_ise.htm).

2. Choose File →  New Project.

3. Enter a project name and location, then click Next > (see Figure 4-6).
X-Ref Target - Figure 4-6

Figure 4-6: Create New Project
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4. Set the project options (see Figure 4-7):

Family: Spartan6

Device: Any LXT device

5. Click Next > and then Finish to create the project.

6. Choose Project →  New Source.

7. Select IP (Core Generator & Architecture Wizard).

X-Ref Target - Figure 4-7

Figure 4-7: Project Settings
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8. Enter a file name and ensure the “Add to project” checkbox is checked (see Figure 4-8).

9. Select Spartan-6 Integrated Block for PCI Express. Click Next > and then Finish 
(see Figure 4-9).

X-Ref Target - Figure 4-8

Figure 4-8: Select Source Type

X-Ref Target - Figure 4-9

Figure 4-9: Select IP
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10. Configure the core as described in Chapter 5, Generating and Customizing the Core.

11. Choose File →  Open Project.

12. Enter the ipcore_dir directory (see Figure 4-10).

13. Select the <component_name>_<lang>_example_project.xise file to load an 
example project with the PIO example design along with the core built in step 1 
through step 9 (see Figure 4-11).

X-Ref Target - Figure 4-10

Figure 4-10: Directory ipcore_dir

X-Ref Target - Figure 4-11

Figure 4-11: Load Example Project
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Directory Structure and File Contents
The integrated Endpoint block example design directories and their associated files are 
defined in the sections that follow. Click a directory name to go to the desired directory and 
its associated files.

Example Design
<project directory>topdirectory

Top-level project directory; name is user-defined

 <project directory>/<component name> 
Core release notes readme file 

 <component name>/doc 
Product documentation 

 <component name>/example_design
Verilog or VHDL design files

<component name>/implement
Implementation script files

 implement/results 
Results directory, created after implementation scripts are run, and 
contains implement script results

 <component name>/simulation

 simulation/dsport
Root Port Bus Functional Model

 simulation/functional
Functional simulation files

 simulation/tests
Test command files

 <component name>/source
Core source files

<project directory>
The project directory contains all the CORE Generator tool project files.

Table 4-1: Project Directory 

Name Description

<project_dir>

<component_name>.xco CORE Generator tool project-specific option file; can 
be used as an input to the CORE Generator software.

<component_name>_flist.txt List of files delivered with core.

<component_name>_<lang>_
example_project.xise

ISE software Project Navigator project file for the PIO 
example design.

<component_name>.v[eo|ho] Verilog or VHDL instantiation template. 

Back to Top

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 45
UG654 (v3.0) April 19, 2010

Directory Structure and File Contents

<project directory>/<component name>
The component name directory contains the release notes readme file provided with the 
core, which can includes tool requirements, last-minute changes, updates, and issue 
resolution. 

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

<component name>/example_design
The example design directory contains the example design files provided with the core.

Table 4-2: Component Name Directory

Name Description

<project_dir>/<component_name>

s6_pcie_readme.txt Readme file.

Back to Top

Table 4-3: Doc Directory 

Name Description

<project_dir>/<component_name>/doc

s6_pcie_ug654.pdf Spartan-6 FPGA Integrated Endpoint Block for PCI Express 
User Guide. 

s6_pcie_ds718.pdf Spartan-6 FPGA Integrated Endpoint Block for PCI Express 
Data Sheet. 

Back to Top

Table 4-4: Example Design Directory 

Name Description

<project_dir>/<component_name>/example_design

xilinx_pcie_1_lane_ep_<device>.ucf Example design UCF. Filename varies by 
part, package, and speed grade.

xilinx_pcie_1_1_ep_s6.v[hd] Top-level PIO example design files for 
1-lane cores.

pcie_app_s6.v[hd]

PIO_EP_MEM.v[hd]

PIO.v[hd]

PIO_EP.v[hd]

PIO_EP_MEM_ACCESS.v[hd]

PIO_TO_CTRL.v[hd]

PIO_32.v[hd]

PIO_32_RX_ENGINE.v[hd]

PIO_32_TX_ENGINE.v[hd]

PIO example design files. 

Back to Top
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<component name>/implement
The implement directory contains the core implementation script files. 

implement/results
The results directory is created by the implement script, after which the implement script 
results are placed in the results directory. 

Table 4-5: Implement Directory 

Name Description

<project_dir>/<component_name>/implement

xst.scr XST synthesis script.

implement.bat
implement.sh

DOS and Linux implementation scripts.

synplify.prj Synplify synthesis script.

xst.prj XST project file for the example design. 

Back to Top

Table 4-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

Implement script result files. 

Back to Top
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<component name>/simulation

simulation/dsport
The dsport directory contains the Root Port Bus Functional model files provided with the 
core.

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 4-7: dsport Directory

Name Description

<project_dir>/<component_name>/simulation/dsport

gtx_drp_chanalign_fix_3752_v6.v[hd]
gtx_rx_valid_filter_v6.v[hd]
gtx_tx_sync_rate_v6.v[hd]
gtx_wrapper_v6.v[hd]
pci_exp_usrapp_cfg.v[hd]
pci_exp_usrapp_com.v
pci_exp_usrapp_pl.v[hd]
pci_exp_usrapp_rx.v[hd]
pci_exp_usrapp_tx.v[hd]
pcie_2_0_rport_v6.v[hd]
pcie_2_0_v6_rp.v[hd]
pcie_bram_top_v6.v[hd]
pcie_bram_v6.v[hd]
pcie_brams_v6.v[hd]
pcie_clocking_v6.v[hd]
pcie_gtx_v6.v[hd]
pcie_pipe_lane_v6.v[hd]
pcie_pipe_misc_v6.v[hd]
pcie_pipe_v6.v[hd]
pcie_reset_delay_v6.v[hd]
pcie_upconfig_fix_3451_v6.v[hd]
test_interface.vhd
xilinx_pcie_2_0_rport_v6.v[hd]

Root port model files.

Back to Top

Table 4-8: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

board_common.v Contains test bench definitions. 

board.f List of files for RTL simulations.

board.v[hd] Top-level simulation module.

isim_cmd.tcl Simulation helper script for ISim.

simulate_isim.bat/simulate_isim.sh Simulation scripts for ISIM DOS/UNIX.

simulate_mti.do Simulation script for ModelSim.
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simulation/tests
The tests directory contains test definitions for the example test bench.

<component name>/source
This directory contains the source files for the core.

simulate_ncsim.sh Simulation script for Cadence IUS.

simulate_vcs.sh Simulation script for VCS.

sys_clk_gen_ds.v[hd] System differential clock source.

sys_clk_gen.v[hd] System clock source.

wave.{do, sv, tcl, wcfg} Waveform setup scripts.

Back to Top

Table 4-8: Functional Directory (Cont’d)

Name Description

Table 4-9: Tests Directory 

Name Description

<project_dir>/<component_name>/simulation/tests

tests.v[hd] Test definitions for example test bench.

Back to Top

Table 4-10: Source Directory 

Name Description

<project_dir>/<component_name>/source

<component name>.v[hd] Verilog or VHDL top-level wrapper, which 
instantiates the Endpoint block, block RAMs, 
GTP transceiver, and clocking resources.

gtpa1_dual_wrapper_tile.v[hd]
gtpa1_dual_wrapper.v[hd]

Wrapper for the GTPA1, which configures the 
transceiver and presents the interfaces required 
for use with the integrated Endpoint block.

pcie_bram_top_s6.v[hd]
pcie_brams_s6.v[hd]
pcie_bram_s6.v[hd]

Configures and instantiates block RAMs for use 
with the integrated Endpoint block.

Back to Top
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Chapter 5

Generating and Customizing the Core

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a fully configurable 
and highly customizable solution. The integrated Endpoint block is customized using the 
CORE Generator software GUI.

Note: The screen captures in this chapter are conceptual representatives of their subjects and 
provide general information only. For the latest information, see the CORE Generator tool.

Customizing the Core through the CORE Generator Software
The CORE Generator software GUI for the Spartan-6 FPGA Integrated Endpoint Block for 
PCI Express consists of nine screens:

• Screen 1: Basic Parameter Settings

• Screen 2: Base Address Registers

• Screen 3: PCI Registers

• Screens 4 and 5: Configuration Register Settings

• Screen 6: Interrupt Capabilities

• Screen 7: Power Management Registers

• Screen 8: PCI Express Extended Capabilities

• Screen 9: Advanced Settings

http://www.xilinx.com
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Basic Parameter Settings
The initial customization screen shown in Figure 5-1 is used to define the basic parameters 
for the core, including the component name, lane width and link speed.

Component Name

Base name of the output files generated for the core. The name must begin with a letter and 
can be composed of these characters: a to z, 0 to 9, and “_.”

PCIe Device / Port Type

• Device Port Type: Indicates the PCI Express logical device type.

X-Ref Target - Figure 5-1

Figure 5-1: Screen 1: Integrated Endpoint Block for PCI Express Parameters
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Base Address Registers
The Base Address Register (BAR) screen shown in Figure 5-2 lets the user set the base 
address register space. Each Bar (0 through 5) represents a 32-bit parameter.

Base Address Register Overview

The Endpoint for PCIe supports up to six 32-bit Base Address Registers (BARs) or three 
64-bit BARs, and the Expansion ROM BAR. BARs can be one of two sizes:

• 32-bit BARs: The address space can be as small as 128 bytes for Memory or 16 bytes 
for I/O, or as large as 2 gigabytes. Used for Memory to I/O.

• 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes. 
Used for Memory only.

All BAR registers share these options:

• Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the 
BAR.

• Type: BARs can either be I/O or Memory.

• I/O: I/O BARs can only be 32-bit; the Prefetchable option does not apply to I/O 
BARs.

X-Ref Target - Figure 5-2

Figure 5-2: Screen 2: BAR Options
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• Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable. 
When a BAR is set as 64 bits, it uses the next BAR for the extended address space 
and makes the next BAR inaccessible to the user

• Size

• Memory: When Memory and 64-bit are not selected, the size can range from 
128 bytes to 2 gigabytes. When Memory and 64-bit are selected, the size can range 
between 128 bytes and 8 exabytes.

• I/O: When selected, the size can range from 16 bytes to 2 gigabytes.

• Prefetchable: Identifies the ability of the memory space to be prefetched.

• Value: The value assigned to the BAR based on the current selections.

For more information about managing the Base Address Register settings, see Managing 
Base Address Register Settings.

Expansion ROM Base Address Register

If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI 
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/O. 
The base address register only responds to commands that access the specified address 
space. Generally, memory spaces less than 4Kbytes in size should be avoided. The 
minimum I/O space allowed is 16 bytes; use of I/O space should be avoided in all new 
designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is 
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading, as 
from a RAM). Byte write operations can be merged into a single doubleword write, when 
applicable.

When configuring the core as an Endpoint for PCIe (non-Legacy), 64-bit addressing must 
be supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit 
addressing is permitted for all BARs that do not have the prefetchable bit set. The 
prefetchable bit related requirement does not apply to a Legacy Endpoint. In either of the 
above cases (Endpoint for PCI Express or Legacy Endpoint), the minimum memory 
address range supported by a BAR is 128 bytes.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A 
base address register is disabled by deselecting unused BARs in the GUI.
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PCI Registers
The PCI Registers Screen shown in Figure 5-3 is used to customize the IP initial values, 
class code and Cardbus CIS pointer information.

ID Initial Values

• Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers 
are assigned by the PCI Special Interest Group to guarantee that each identifier is 
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor 
identification number here. FFFFh is reserved.

• Device ID: A unique identifier for the application; the default value is 0007h. This 
field can be any value; change this value for the application.

• Revision ID: Indicates the revision of the device or application; an extension of the 
Device ID. The default value is 00h; enter values appropriate for the application.

• Subsystem Vendor ID: Further qualifies the manufacturer of the device or 
application. Enter a Subsystem Vendor ID here; the default value is 10EE. Typically, 
this value is the same as Vendor ID. Setting the value to 0000h can cause compliance 
testing issues.

• Subsystem ID: Further qualifies the manufacturer of the device or application. This 
value is typically the same as the Device ID; default value is 0007h. Setting the value 
to 0000h can cause compliance testing issues.

X-Ref Target - Figure 5-3

Figure 5-3: PCI Registers: Screen 3
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Class Code

The Class Code identifies the general function of a device, and is divided into three byte-
size fields:

• Base Class: Broadly identifies the type of function performed by the device.

• Sub-Class: More specifically identifies the device function.

• Interface: Defines a specific register-level programming interface, if any, allowing 
device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Cardbus CIS Pointer

Used in cardbus systems and points to the Card Information Structure for the cardbus 
card. If this field is non-zero, an appropriate Card Information Structure must exist in the 
correct location. The default value is 0000_0000h; value range is 0000_0000h through 
FFFF_FFFFh.

Configuration Register Settings
The Configuration Registers screens shown in Figure 5-4 and Figure 5-5 show the options 
for the Device Capabilities and Registers, the Block RAM Configuration Options, the Link 
Capabilities Register, and the Link Status Register.
X-Ref Target - Figure 5-4

Figure 5-4: Screen 4: Configuration Settings
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Capabilities Register

• Capability Version: Indicates PCI-SIG defined PCI Express capability structure 
version number; this value cannot be changed.

• Device Port Type: Indicates the PCI Express logical device type.

• Capabilities Register: Displays the value of the Capabilities register presented by the 
integrated Endpoint block, and is not editable.

Device Capabilities Register

• Max Payload Size: Indicates the maximum payload size that the device/function can 
support for TLPs.

• Extended Tag Field: Indicates the maximum supported size of the Tag field as a 
Requester. When selected, indicates 8-bit Tag field support. When deselected, 
indicates 5-bit Tag field support.

• Phantom Functions: Indicates the support for use of unclaimed function numbers to 
extend the number of outstanding transactions allowed by logically combining 
unclaimed function numbers (called Phantom Functions) with the Tag identifier. See 
Section 2.2.6.2 of the PCI Express Base Specification version 1.1 for a description of 
Tag Extensions. This field indicates the number of most significant bits of the function 
number portion of Requester ID that are logically combined with the Tag identifier.

X-Ref Target - Figure 5-5

Figure 5-5: Screen 5: Configuration Settings
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• Acceptable L0s Latency: Indicates the acceptable total latency that an Endpoint can 
withstand due to the transition from L0s state to the L0 state.

• Acceptable L1 Latency: Indicates the acceptable latency that an Endpoint can 
withstand due to the transition from L1 state to the L0 state.

• Device Capabilities Register: Displays the value of the Device Capabilities register 
presented by the integrated Endpoint block and is not editable.

Block RAM Configuration Options

• Performance Level: Selects the Performance Level settings, which determines the 
Receiver and Transmitter Sizes. The table displayed specifies the Receiver and 
Transmitter settings - number of TLPs buffered in the Transmitter, the Receiver Size, 
the credits advertised by the core to the Link Partner and the number of block RAMs 
required for the configuration, corresponding to the Max Payload Size selected, for 
each of the Performance Level options.

• Finite Completions: If selected, causes the device to advertise to the Link Partner the 
actual amount of space available for completions in the receiver. For an Endpoint, this 
is not compliant to the PCI Express Base Specification version 1.1, as endpoints are 
required to advertise an infinite amount of completion space. Finite completions are 
not supported in this release of the core.

Link Capabilities Register

This section is used to set the Link Capabilities register.

• Maximum Link Speed: Indicates the maximum link speed of the given PCI Express 
Link. This value is set to 2.5 Gb/s and is not editable.

• Maximum Link Width: This value is set to 1 lane.

• Enable ASPM L1 Support: Indicates the level of ASPM supported on the given PCI 
Express Link. L0s is always supported by the integrated Endpoint block core; L1 
support is optional and is enabled if this box is checked.

• Link Capabilities Register: Displays the value of the Link Capabilities register 
presented by the Endpoint and is not editable.

Link Status Register

• Enable Slot Clock Configuration: Indicates that the Endpoint uses the platform-
provided physical reference clock available on the connector. Must be cleared if the 
Endpoint uses an independent reference clock.
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Interrupt Capabilities
The Interrupt Settings screen shown in Figure 5-6 sets the Legacy Interrupt Settings and 
MSI Capabilities.

Legacy Interrupt Settings

• Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of 
“None” indicates no Legacy Interrupts are used.

MSI Capabilities

• Multiple Message Capable: Selects the number of MSI vectors to request from the 
Root Complex.

X-Ref Target - Figure 5-6

Figure 5-6: Interrupt Capabilities: Screen 6
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Power Management Registers
The Power Management Registers screen shown in Figure 5-7 includes settings for the 
Power Management Registers, power consumption and power dissipation options.

Power Management Registers

• Device Specific Initialization: This bit indicates whether special initialization of this 
function is required (beyond the standard PCI configuration header) before the 
generic class device driver is able to use it. When selected, this option indicates that 
the function requires a device specific initialization sequence following transition to 
the D0 uninitialized state. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

• D1 Support: When selected, this option indicates that the function supports the D1 
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

• D2 Support: When selected, this option indicates that the function supports the D2 
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface 
Specification Revision 1.2.

• PME Support From: When this option is selected, indicates the power states in which 
the function can assert PME#. See section 3.2.3 of the PCI Bus Power Management 
Interface Specification Revision 1.2.

X-Ref Target - Figure 5-7

Figure 5-7: Power Management Registers: Screen 7
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Power Consumption

For information about power consumption, see section 3.2.6 of the PCI Bus Power 
Management Interface Specification Revision 1.2

Power Dissipated

For information about power dissipation, see section 3.2.6 of the PCI Bus Power 
Management Interface Specification Revision 1.2.

PCI Express Extended Capabilities
The PCIe Extended Capabilities screen shown in Figure 5-8 includes settings for Device 
Serial Number Capability and optional user-defined Configuration capabilities.

Device Serial Number Capability

• Device Serial Number Capability: An optional PCIe Extended Capability containing 
a unique Device Serial Number. If enabled, the core presents the Device Serial 
Number Capability using the value presented on the Device Serial Number input pin 
of the port. If disabled, no Device Serial Number Extended Capability is presented.

X-Ref Target - Figure 5-8

Figure 5-8: Screen 8: PCIe Extended Capabilities
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User Defined Configuration Capabilities

• PCI Configuration Space Enable: Allows the user application to add/implement PCI 
Legacy capability registers. This option should be selected if the user application 
implements a legacy capability configuration space. This option enables the routing of 
Configuration Requests to addresses outside the built-in PCI-Compatible 
Configuration Space address range to the Transaction Interface. 

• PCI Express Extended Configuration Space Enable: Allows the user application to 
add/implement PCI Express Extended capability registers. This option should be 
selected if the user application implements such an extended capability configuration 
space. This enables the routing of Configuration Requests to addresses outside the 
built-in PCI Express Extended Configuration Space address range to the user 
application. 

Advanced Settings
The Advanced Settings screen shown in Figure 5-9 includes settings for Transaction Layer, 
Physical Layer, Reference Clock Frequency and Xilinx Reference Boards options.
X-Ref Target - Figure 5-9

Figure 5-9: Screen 9: Advanced Settings 1
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Transaction Layer Module

• Trim TLP Digest ECRC: Causes the core to trim any TLP digest from an inbound 
packet and clear the TLP Digest bit in the TLP header, before presenting it to the user.

• Pipeline Registers for Transaction Block RAM Buffers: Selects the Pipeline registers 
enabled for the Transaction Buffers. Pipeline registers can be enabled on either the 
Write path or both the Read and Write paths of the Transaction Block RAM buffers.

Advanced Physical Layer

• Force No Scrambling: Used for diagnostic purposes only and should never be 
enabled in a working design. Setting this bit results in the data scramblers being 
turned off so that the serial data stream can be analyzed.

Xilinx Reference Boards

Selecting this option enables the generation of Xilinx Reference Board specific design files. 
Selecting the SP605 board configures the Reference Clock Frequency, Transceiver Location 
and Transceiver Channel corresponding with the PCI Express edge connector on the 
reference board. It also sets the corresponding pin locations in the UCF file. The user must 
select the correct part/package combination when setting up the project to generate Xilinx 
reference board specific design files.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For important information 
about clocking the Spartan-6 FPGA Integrated Endpoint Block for PCI Express, see 
Clocking and Reset of the Integrated Endpoint Block Core, page 107.

Transceiver Selection

• Transceiver Location: Selects the GTPA1_DUAL location for the PCI Express link.

• Transceiver Channel: Selects the channel within the GTPA1_DUAL.
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Chapter 6

Designing with the Core

This chapter provides design instructions for the Spartan®-6 FPGA Integrated Endpoint 
Block for PCI Express® user interface and assumes knowledge of the PCI Express 
Transaction Layer Packet (TLP) header fields. Header fields are defined in PCI Express Base 
Specification v1.1, Chapter 2, Transaction Layer Specification. 

This chapter includes the following design guidelines: 

• Transmitting Outbound Packets

• Receiving Inbound Packets

• Design with Configuration Space Registers and Configuration Interface

• Additional Packet Handling Requirements

• Power Management

• Generating Interrupt Requests

• Clocking and Reset of the Integrated Endpoint Block Core
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TLP Format on the Transaction Interface
Data is transmitted and received in Big-Endian order as required by the PCI Express Base 
Specification. See Chapter 2 of the PCI Express Base Specification for detailed information 
about TLP packet ordering. Figure 6-1 represents a typical 32-bit addressable Memory 
Write Request TLP (as illustrated in Chapter 2 of the specification).

When using the 32-bit Transaction interface, packets are arranged on the 32-bit datapath in 
the same order as shown in Figure 6-1. Byte 0 of the packet appears on trn_td[31:24] 
(outbound) or trn_rd[31:24] (inbound) of the first DWORD, byte 1 on trn_td[23:16] or 
trn_rd[23:16], and so forth. Byte 4 of the packet then appears on trn_td[31:24] or 
trn_rd[31:24] of the second DWORD. The Header section of the packet consists of either 
three or four DWORDs, determined by the TLP format and type as described in section 2.2 
of the PCI Express Base Specification.

Packets sent to the core for transmission must follow the formatting rules for Transaction 
Layer Packets (TLPs) as specified in Chapter 2 of the PCI Express Base Specification. The user 
application is responsible for ensuring its packets’ validity, as the core does not check 
packet validity or validate packets. The exact fields of a given TLP vary depending on the 
type of packet being transmitted.

The core allows the user application to add an extra level of error checking by using the 
optional TLP Digest field in the TLP header. The presence of a TLP Digest or ECRC is 
indicated by the value of TD field in the TLP Header section. When TD=1, a correctly 
computed CRC32 remainder DWORD is expected to be presented as the last DWORD of 
the packet. The CRC32 remainder DWORD is not included in the length field of the TLP 
header. The user application must calculate and present the TLP Digest as part of the 
packet when transmitting packets. Upon receiving packets with a TLP Digest present, the 
user application must check the validity of the CRC32 based on the contents of the packet. 
The core does not check the TLP Digest for incoming packets. 

The PCI Express Base Specification requires Advanced Error Reporting (AER) capability 
when implementing ECRC. Although the integrated Endpoint block does not support 
AER, users can still implement ECRC for custom solutions that do not require PCI Express 
Base Specification Compliance. 

X-Ref Target - Figure 6-1

Figure 6-1: PCI Express Base Specification Byte Order
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Basic TLP Transmit Operation

The Endpoint for PCIe automatically transmits the following types of packets:

• Completions to a remote device in response to Configuration Space requests.

• Error-message responses to inbound requests malformed or unrecognized by the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be 
detected by the user application, which is responsible for generating the appropriate response.

The user application is responsible for constructing these types of outbound packets:

• Memory and I/O Requests to remote devices.

• Completions in response to requests to the user application, for example, a Memory 
Read Request.

• Completions in response to user-implemented Configuration Space requests when 
enabled. These requests include PCI Legacy capability registers beyond address BFh 
and PCI Express extended capability registers beyond address 1FFh.

Note: For important information about accessing user-implemented Configuration Space while 
in a low-power state, see Power Management, page 101.

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core notifies the user 
application of pending internally generated TLPs that will arbitrate for the transmit 
datapath by asserting trn_tcfg_req_n (0b). The user application can choose to give priority 
to core-generated TLPs by driving trn_tcfg_gnt_n asserted (0b) permanently, without 
regard to trn_tcfg_req_n. Doing so prevents user-application-generated TLPs from being 
transmitted when a core-generated TLP is pending. Alternatively, the user application can 
reserve priority for a user-application-generated TLP over core-generated TLPs, by 
holding trn_tcfg_gnt_n deasserted (1b) until the user transaction is complete. Then, it is 
asserted (0b) for one clock cycle. Users must not delay asserting trn_cfg_gnt_n indefinitely, 
as this might cause a completion time-out in the Requester. See the PCI Express Base 
Specification for more information on the Completion Timeout Mechanism.

Table 2-9, page 28 defines the transmit-direction Transaction interface signals. To transmit 
a TLP, the user application must perform the following sequence of events on the transmit 
Transaction interface: 

1. The user application logic asserts trn_tsrc_rdy_n, trn_tsof_n and presents the first TLP 
DWORD on trn_td[31:0] when it is ready to transmit data.

2. The user application asserts trn_tsrc_rdy_n and presents the remainder of the TLP 
DWORDs on trn_td[31:0] for subsequent clock cycles (for which the core asserts 
trn_tdst_rdy_n).

3. The user application asserts trn_tsrc_rdy_n and trn_teof_n together with the last 
DWORD of data. 

4. At the next clock cycle, the user application deasserts trn_tsrc_rdy_n to signal the end 
of valid transfers on trn_td[31:0].
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Figure 6-2 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. 
X-Ref Target - Figure 6-2

Figure 6-2: TLP 3-DW Header without Payload
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Figure 6-3 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit 
addressable Memory Read request. 

Figure 6-4 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. 

X-Ref Target - Figure 6-3

Figure 6-3: TLP 4-DW Header without Payload

X-Ref Target - Figure 6-4

Figure 6-4: TLP with 3-DW Header with Payload
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Figure 6-5 illustrates a 4-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. 

Presenting Back-to-Back Transactions on the Transmit Interface

The user application can present back-to-back TLPs on the transmit Transaction interface 
to maximize bandwidth utilization. Figure 6-6 illustrates back-to-back TLPs presented on 
the transmit interface. The user application asserts trn_tsof_n and presents a new TLP on 
the next clock cycle after asserting trn_teof_n for the previous TLP.

X-Ref Target - Figure 6-5

Figure 6-5: TLP with 4-DW Header with Payload
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Figure 6-6: Back-to-Back Transaction on Transmit Interface
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Source Throttling on the Transmit Datapath

The Transaction interface lets the user application throttle back if it has no data present on 
trn_td[31:0]. When this condition occurs, the user application deasserts trn_tsrc_rdy_n, 
which instructs the core Transaction interface to disregard data presented on trn_td[31:0]. 
Figure 6-7 illustrates the source throttling mechanism, where the user application does not 
have data to present every clock cycle, and for this reason must deassert trn_tsrc_rdy_n 
during these cycles. The user application should not deassert trn_tsrc_rdy_n during the 
middle of a transfer if trn_tstr_n is asserted. 

Destination Throttling of the Transmit Datapath

The core Transaction interface throttles the user application if there is no space left for a 
new TLP in its transmit buffer pool. This can occur if the link partner is not processing 
incoming packets at a rate equal to or greater than the rate at which the user application is 
presenting TLPs. Figure 6-8 illustrates the deassertion of trn_tdst_rdy_n to throttle the user 
application when the core’s internal transmit buffers are full.

X-Ref Target - Figure 6-7

Figure 6-7: Source Throttling on the Transmit Datapath
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If the core transmit Transaction interface accepts the start of a TLP by asserting 
trn_tdst_rdy_n, it is guaranteed to accept the complete TLP with a size up to the value 
contained in the Max_Payload_Size field of the PCI Express Device Capability Register 
(offset 04H). To stay compliant to the PCI Express Base Specification, users should not violate 
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The 
core transmit Transaction interface deasserts trn_tdst_rdy_n only under these conditions: 

• After it has accepted the TLP completely and has no buffer space available for a new 
TLP.

• When the core is transmitting an internally generated TLP (configuration Completion 
TLP, error Message TLP or error response as requested by the user application on the 
cfg_err interface), after it has been granted use of the transmit datapath by the user 
application, by assertion of trn_tcfg_gnt_n. The core subsequently asserts 
trn_tdst_rdy_n after transmitting the internally generated TLP.

On deassertion of trn_tdst_rdy_n by the core, the user application needs to hold all control 
and data signals until the core asserts trn_tdst_rdy_n. The core transmit Transaction 
interface throttles the user application when the Power State field in Power Management 
Control/Status Register (Offset 0x4) of the PCI Power Management Capability Structure 
is changed to a non-D0 state. When this occurs, any ongoing TLP is accepted completely 
and trn_tdst_rdy_n is subsequently deasserted, disallowing the user application from 
initiating any new transactions—for the duration that the core is in the non-D0 power 
state.

X-Ref Target - Figure 6-8

Figure 6-8: Destination Throttling of the Endpoint Transmit Transaction Interface
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Discontinuing Transmission of Transaction by Source

The core Transaction interface lets the user application terminate transmission of a TLP by 
asserting trn_tsrc_dsc_n. Both trn_tsrc_rdy_n and trn_tdst_rdy_n must be asserted 
together with trn_tsrc_dsc_n for the TLP to be discontinued. The signal trn_tsrc_dsc_n 
must not be asserted together with trn_tsof_n. It can be asserted on any cycle after 
trn_sof_n is deasserted up to and including the assertion of trn_teof_n. Asserting 
trn_tsrc_dsc_n has no effect if no TLP transaction is in progress on the transmit interface. 
Figure 6-9 illustrates the user application discontinuing a packet using trn_tsrc_dsc_n. 
Asserting trn_teof_n together with trn_tsrc_dsc_n is optional.
X-Ref Target - Figure 6-9

Figure 6-9: Source Driven Transaction Discontinue on Transmit Interface
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Discarding of Transaction by Destination

The core transmit Transaction interface discards a TLP for three reasons:

• The PCI Express link goes down.

• Presented TLP violates the Max_Payload_Size field of the Device Capability Register 
(offset 04H) for PCI Express (it is left to the user to not violate the Max_Payload_Size 
field of the Device Control Register (offset 08H)).

• trn_tstr_n is asserted and data is not presented on consecutive clock cycles; that is, 
trn_tsrc_rdy_n is deasserted in the middle of a TLP transfer.

When any of these occurs, the transmit Transaction interface continues to accept the 
remainder of the presented TLP and asserts trn_terr_drop_n no later than the second clock 
cycle following the EOF of the discarded TLP. Figure 6-10 illustrates the core signaling that 
a packet was discarded using trn_terr_drop_n due to a length violation.
X-Ref Target - Figure 6-10

Figure 6-10: Destination Driven Transaction Discontinue on Transmit Interface
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Packet Data Poisoning on the Transmit Transaction Interface

The user application can use one of these mechanisms to mark the data payload of a 
transmitted TLP as poisoned:

• Set EP = 1 in the TLP header. This mechanism can be used if the payload is known to 
be poisoned when the first DWORD of the header is presented to the core on the 
Transaction interface.

• Assert trn_terr_fwd_n for at least 1 valid data transfer cycle any time during the 
packet transmission, as shown in Figure 6-11. This causes the core to set EP = 1 in the 
TLP header when it transmits the packet onto the PCI Express fabric. This mechanism 
can be used if the user application does not know whether a packet can be poisoned at 
the start of packet transmission. Use of trn_terr_fwd_n is not supported for packets 
when trn_tstr_n is asserted (streamed transmit packets).

X-Ref Target - Figure 6-11

Figure 6-11: Packet Data Poisoning on the Transmit Transaction Interface
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Streaming Mode for Transactions on the Transmit Interface

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core allows the user 
application to enable Streaming (cut-through) mode for transmission of a TLP, when 
possible, to reduce latency of operation. To enable this feature, the user application must 
hold trn_tstr_n asserted for the entire duration of the transmitted TLP. In addition, the user 
application must present valid frames on every clock cycle until the final cycle of the TLP. 
In other words, the user application must not deassert trn_tsrc_rdy_n for the duration of 
the presented TLP. Source throttling of the transaction while in streaming mode of 
operation causes the transaction to be dropped (trn_terr_drop_n is asserted) and a 
nullified TLP to be signaled on the PCI Express link. Figure 6-12 illustrates the streaming 
mode of operation, where the first TLP is streamed and the second TLP is dropped due to 
source throttling.

Appending ECRC to Protect TLPs

If the user application needs to send a TLP Digest associated with a TLP, it must construct 
the TLP header such that the TD bit is set and the user application must properly compute 
and append the 1-DWORD TLP Digest after the last valid TLP payload section (if 
applicable). TLPs originating within the core, for example Completions, Error Messages, 
and Interrupts, do not have a TLP Digest appended.

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the 
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This 
value is equal to or less than the value advertised by the core's Device Capability register. 
The advertised value in the Device Capability register of the integrated Endpoint block 
core is either 128, 256, or 512 bytes, depending on the setting in the CORE Generator 
software GUI. For more information about these registers, see section 7.8 of the PCI Express 
Base Specification. The value of the core's Device Control register is provided to the user 
application on the cfg_dcommand[15:0] output. See Design with Configuration Space 
Registers and Configuration Interface, page 87 for information about this output. 

X-Ref Target - Figure 6-12

Figure 6-12: Streaming Mode on the Transmit Interface
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Transmit Buffers

The Endpoint for PCIe transmit Transaction interface provides trn_tbuf_av, an 
instantaneous indication of the number of Max_Payload_Size buffers available for use in 
the transmit buffer pool. Table 6-1 defines the number of transmit buffers available and 
maximum supported payload size for a specific core.

Each buffer can hold one maximum sized TLP. A maximum sized TLP is a TLP with a 
4-DWORD header plus a data payload equal to the MAX_PAYLOAD_SIZE of the core (as 
defined in the Device Capability register) plus a TLP Digest. After the link is trained, the 
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This 
value is equal to or less than the value advertised by the core's Device Capability register. 
For more information about these registers, see section 7.8 of the PCI Express Base 
Specification. A TLP is held in the core's transmit buffer until the link partner 
acknowledges receipt of the packet, at which time the buffer is released and a new TLP can 
be loaded into it by the user application.

For example, if the Capability Max Payload Size selected for the Endpoint core is 256 bytes, 
and the performance level selected is high, there are 29 total transmit buffers. Each of these 
buffers can hold at a maximum one 64-bit Memory Write Request (4 DWORD header) plus 
256 bytes of data (64 DWORDs) plus TLP Digest (1 DWORD) for a total of 69 DWORDs. 
This example assumes the root complex set the MAX_PAYLOAD_SIZE register of the 
Device Control register to 256 bytes, which is the maximum capability advertised by this 
core. For this reason, at any given time, this core could have 29 of these 69 DWORD TLPs 
awaiting transmittal. There is no sharing of buffers among multiple TLPs, so even if user is 
sending smaller TLPs such as 32-bit Memory Read request with no TLP Digest totaling 
3 DWORDs only per TLP, each transmit buffer still holds only one TLP at any time.

The internal transmit buffers are shared between the user application and the core’s 
configuration management module (CMM). Due to this, the trn_tbuf_av bus can fluctuate 
even if the user application is not transmitting packets. The CMM generates completion 
TLPs in response to configuration reads or writes, interrupt TLPs at the request of the user 
application, and message TLPs when needed.

The Transmit Buffers Available indication enables the user application to completely 
utilize the PCI transaction ordering feature of the core transmitter. The transaction 
ordering rules allow for Posted and Completion TLPs to bypass Non-Posted TLPs. See 
section 2.4 of the PCI Express Base Specification for more information about ordering rules.

The core supports the transaction ordering rules and promotes Posted and Completion 
packets ahead of blocked Non-Posted TLPs. Non-Posted TLPs can become blocked if the 
link partner is in a state where it momentarily has no Non-Posted receive buffers available, 
which it advertises through Flow Control updates. In this case, the core promotes 
Completion and Posted TLPs ahead of these blocked Non-Posted TLPs. However, this can 

Table 6-1: Transmit Buffers Available

Capability Max 
Payload Size 

(Bytes)

Performance Level(1)

Good (Minimize Block RAM Usage) High (Maximize Performance)

128 13 27

256 14 29

512 15 30

Notes: 
1. Performance level is set through a CORE Generator software GUI selection. 

http://www.xilinx.com


76 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG654 (v3.0) April 19, 2010

Chapter 6: Designing with the Core

only occur if the Completion or Posted TLP has been loaded into the core by the user 
application. By monitoring the trn_tbuf_av bus, the user application can ensure there is at 
least one free buffer available for any Completion or Posted TLP. Promotion of Completion 
and Posted TLPs only occurs when Non-Posted TLPs are blocked; otherwise packets are 
sent on the link in the order they are received from the user application.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-7, page 23 defines the receive Transaction interface signals. This sequence of events 
must occur on the receive Transaction interface for the core to present a TLP to the user 
application logic:

1. When the user application is ready to receive data, it asserts trn_rdst_rdy_n. 

2. When the core is ready to transfer data, the core asserts trn_rsrc_rdy_n with trn_rsof_n 
and presents the first complete TLP DWORD on trn_rd[31:0]. 

3. The core then deasserts trn_rsof_n, asserts trn_rsrc_rdy_n, and presents TLP DWORDs 
on trn_rd[31:0] for subsequent clock cycles, for which the user application logic asserts 
trn_rdst_rdy_n.

4. The core then asserts trn_reof_n and presents either the last DWORD on trn_td[31:0]. 

5. If no further TLPs are available, at the next clock cycle, the core deasserts 
trn_rsrc_rdy_n to signal the end of valid transfers on trn_rd[31:0].

Figure 6-13 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit 
addressable Memory Read request. 
X-Ref Target - Figure 6-13

Figure 6-13: TLP 3-DW Header without Payload
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Figure 6-14 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit 
addressable Memory Read request. 
X-Ref Target - Figure 6-14

Figure 6-14: TLP 4-DW Header without Payload
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Figure 6-15 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit 
addressable Memory Write request. 
X-Ref Target - Figure 6-15

Figure 6-15: TLP 3-DW Header with Payload
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Figure 6-16 illustrates a 4-DW TLP header with a data payload; an example is a 64-bit 
addressable Memory Write request. 

Throttling the Datapath on the Receive Transaction Interface 

The user application can stall the transfer of data from the core at any time by deasserting 
trn_rdst_rdy_n. If the user deasserts trn_rdst_rdy_n while no transfer is in progress and if 
a TLP becomes available, the core asserts trn_rsrc_rdy_n and trn_rsof_n and presents the 
first TLP DWORD on trn_rd[31:0]. The core remains in this state until the user asserts 
trn_rdst_rdy_n to signal the acceptance of the data presented on trn_rd[31:0]. At that point, 
the core presents subsequent TLP DWORDs as long as trn_rdst_rdy_n remains asserted. If 
the user deasserts trn_rdst_rdy_n during the middle of a transfer, the core stalls the 
transfer of data until the user asserts trn_rdst_rdy_n again. There is no limit to the number 
of cycles the user can keep trn_rdst_rdy_n deasserted. The core pauses until the user is 
again ready to receive TLPs.

Figure 6-17 illustrates the core asserting trn_rsrc_rdy_n and trn_rsof_n along with 
presenting data on trn_rd[31:0]. The user application logic inserts wait states by 
deasserting trn_rdst_rdy_n. The core does not present the next TLP DWORD until it 
detects trn_rdst_rdy_n assertion. The user application logic can assert or deassert 
trn_rdst_rdy_n as required to balance receipt of new TLP transfers with the rate of TLP 
data processing inside the application logic. 

X-Ref Target - Figure 6-16

Figure 6-16: TLP 4-DW Header with Payload
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Receiving Back-to-Back Transactions on the Receive Transaction Interface

The user application logic must be designed to handle presentation of back-to-back TLPs 
on the receive interface Transaction interface by the core. The core can assert trn_rsof_n for 
a new TLP at the clock cycle after trn_reof_n assertion for the previous TLP. Figure 6-18 
illustrates back-to-back TLPs presented on the receive interface.

X-Ref Target - Figure 6-17

Figure 6-17: User Application Throttling Receive TLP
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Figure 6-18: Receive Back-to-Back Transactions
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If the user application cannot accept back-to-back packets, it can stall the transfer of the 
TLP by deasserting trn_rdst_rdy_n as discussed in the previous section. Figure 6-19 shows 
an example of using trn_rdst_rdy_n to pause the acceptance of the second TLP.

Packet Re-ordering on Receive Transaction Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction 
ordering rules. The transaction ordering rules allow for Posted and Completion TLPs to 
bypass blocked Non-Posted TLPs.

The user application can deassert trn_rnp_ok_n if it is not ready to accept Non-Posted 
Transactions from the core, (as shown in Figure 6-20) but can receive Posted and 
Completion Transactions. The user application must deassert trn_rnp_ok_n at least one 
clock cycle before trn_eof_n of the next-to-last Non-Posted packet the user can accept. 
While trn_rnp_ok_n is deasserted, received Posted and Completion Transactions pass 
Non-Posted Transactions. After the user application is ready to accept Non-Posted 
Transactions, it must reassert trn_rnp_ok_n. Previously bypassed Non-Posted 
Transactions are presented to the user application before other received TLPs.

X-Ref Target - Figure 6-19

Figure 6-19: User Application Throttling of Back-to-Back TLPs
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X-Ref Target - Figure 6-20

Figure 6-20: Packet Re-ordering on Receive Transaction Interface
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Packet re-ordering allows the user application to optimize the rate at which Non-Posted 
TLPs are processed, while continuing to receive and process Posted and Completion TLPs 
in a non-blocking fashion. The trn_rnp_ok_n signaling restrictions require that the user 
application be able to receive and buffer at least three Non-Posted TLPs. The following 
algorithm describes the process of managing the Non-Posted TLP buffers.

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer space 
available to user application. The size of the Non-Posted buffer space is three Non-Posted 
TLPs. Non-Posted_Buffers_Available is decremented when a Non-Posted TLP is accepted 
for processing from the core, and is incremented when Non-Posted TLP is drained for 
processing by the user application.

For every clock cycle, do   {
   if (Valid transaction Start-Of-Frame accepted by user application)  {
     Extract TLP Format and Type from the 1st TLP DW
     if (TLP type == Non Posted)  {
       if (Non-Posted_Buffers_Available <= 2)   // Accounts for the 
current and possibly the next NP TLP
         Deassert trn_rnp_ok_n on the following clock cycle.
       else if (Other optional  user policies to stall Non-Posted 
transactions)
         Deassert trn_rnp_ok_n on the following clock cycle.
       else // (Non-Posted_Buffers_Available > 2)
         Assert trn_rnp_ok_n on the following clock cycle.
       Decrement Non-Posted_Buffers_Available in User Application
      } else {  // Posted and Completion TLPs
        Process the received TLPs
      }
   }
}

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 83
UG654 (v3.0) April 19, 2010

Packet Data Poisoning and TLP Digest on Receive Transaction Interface

To simplify logic within the user application, the core performs automatic pre-processing 
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the 
received TLP. 

All received TLPs with the Data Poisoning bit in the header set (EP=1) are presented to the 
user. The core asserts the trn_rerrfwd_n signal for the duration of each poisoned TLP, as 
illustrated in Figure 6-21.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End 
CRC (ECRC). The core performs the following operations based on how the user 
configured the core during core generation: 

• If the Trim TLP Digest option is on, the core removes and discards the ECRC field 
from the received TLP and clears the TLP Digest bit in the TLP header.

• If the Trim TLP Digest option is off, the core does not remove the ECRC field from the 
received TLP and presents the entire TLP including TLP Digest to the user application 
receiver interface.

See Chapter 5, Generating and Customizing the Core, for more information about how to 
enable the Trim TLP Digest option during core generation. 

Packet Base Address Register Hit on Receive Transaction Interface

The core decodes incoming Memory and I/O TLP request addresses to determine which 
Base Address Register (BAR) in the core's Type0 configuration space is being targeted, and 
indicates the decoded base address on trn_rbar_hit_n[6:0]. For each received Memory or 
I/O TLP, a minimum of one and a maximum of two (adjacent) bit(s) are set to 0. If the 
received TLP targets a 32-bit Memory or I/O BAR, only one bit is asserted. If the received 
TLP targets a 64-bit Memory BAR, two adjacent bits are asserted. If the core receives a TLP 
that is not decoded by one of the BARs (that is, a misdirected TLP), then the core drops it 
without presenting it to the user and an Unsupported Request message is automatically 
generated. Even if the core is configured for a 64-bit BAR, the system might not always 
allocate a 64-bit address, in which case only one trn_rbar_hit_n[6:0] signal is asserted.

X-Ref Target - Figure 6-21

Figure 6-21: Receive Transaction Data Poisoning
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Table 6-2 illustrates mapping between trn_rbar_hit_n[6:0] and the BARs, and the 
corresponding byte offsets in the core Type0 configuration header.

For a Memory or I/O TLP Transaction on the receive interface, trn_rbar_hit_n[6:0] is valid 
for the entire TLP, starting with the assertion of trn_rsof_n, as shown in Figure 6-22. When 
receiving non-Memory and non-I/O transactions, trn_rbar_hit_n[6:0] is undefined.

The signal trn_rbar_hit_n[6:0] enables received Memory and I/O transactions to be 
directed to the appropriate destination Memory and I/O apertures in the user application. 
By utilizing trn_rbar_hit_n[6:0], application logic can inspect only the lower order Memory 
and I/O address bits within the address aperture to simplify decoding logic.

Table 6-2: trn_rbar_hit_n to Base Address Register Mapping 

trn_rbar_hit_n[x] BAR Byte Offset

0 0 10h

1 1 14h

2 2 18h

3 3 1Ch

4 4 20h

5 5 24h

6 Expansion ROM BAR 30h

X-Ref Target - Figure 6-22

Figure 6-22: BAR Target Determination using trn_rbar_hit
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The Endpoint for PCIe asserts trn_rsrc_dsc_n if communication with the link partner is 
lost, which results in the termination of an in-progress TLP. The loss of communication with 
the link partner is signaled by deassertion of trn_lnk_up_n. When trn_lnk_up_n is 
deasserted, it effectively acts as a Hot Reset to the entire core. For this reason, all TLPs 
stored inside the core or being presented to the receive interface are irrecoverably lost. 
Figure 6-23 illustrates packet transfer discontinue scenario.
X-Ref Target - Figure 6-23

Figure 6-23: Receive Transaction Discontinue
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Receiver Flow Control Credits Available

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express provides the user 
application information about the state of the receiver buffer pool queues. This 
information represents the current space available for the Posted, Non-Posted, and 
Completion queues.

One Header Credit is equal to either a 3 or 4 DWORD TLP Header and one Data Credit is 
equal to 16 bytes of payload data. Table 6-3 provides values on credits available 
immediately after trn_lnk_up_n assertion but before the reception of any TLP. If space 
available for any of the above categories is exhausted, the corresponding credit available 
signals indicate a value of zero. Credits available return to initial values after the receiver 
has drained all TLPs.

The user application can use the trn_fc_ph[7:0], trn_fc_pd[11:0], trn_fc_nph[7:0], 
trn_fc_npd[11:0], trn_fc_cplh[7:0], trn_fc_cpld[11:0], and trn_fc_sel[2:0] signals to 
efficiently utilize and manage receiver buffer space available in the core and the core 
application. For additional information, see Flow Control Credit Information, page 98.

Endpoint cores for PCI Express have a unique requirement where the user application 
must use advanced methods to prevent buffer overflows while requesting Non-Posted 
Read Requests from an upstream component. According to the specification, a PCI Express 
Endpoint is required to advertise infinite storage credits for Completion Transactions in its 
receivers. This means that endpoints must internally manage Memory Read Requests 
transmitted upstream and not overflow the receiver when the corresponding Completions 
are received. The user application transmit logic must use Completion credit information 
presented to modulate the rate and size of Memory Read requests, to stay within the 
instantaneous Completion space available in the core receiver. For additional information, 
see Appendix E, Managing Receive-Buffer Space for Inbound Completions.

Table 6-3: Transaction Receiver Credits Available Initial Values 

Credit Category
Performance 

Level
128 byte 

Capability MPS
256 byte 

Capability MPS
512 byte 

Capability MPS

Non-Posted Header Good
8

High

Posted Header Good 16 24 32

High 30 32 32

Posted Data Good 41 96 211

High 89 211 467

Completion Header Good 16 24 40

High 30  40 40

Completion Data Good 41 96 211

High 89 211 467
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Design with Configuration Space Registers and Configuration 
Interface

This section describes the use of the Configuration Interface for accessing the PCI Express 
Configuration Space Type 0 registers that are part of the integrated Endpoint block core. 
The Configuration Interface includes a read Configuration Port for accessing the registers. 
In addition, some commonly used registers are mapped directly on the Configuration 
Interface for convenience.

Registers Mapped Directly onto the Configuration Interface
The integrated Endpoint block core provides direct access to select command and status 
registers in its Configuration Space. Values in these registers are modified by 
Configuration Writes received from the Root Complex and cannot be modified by the user 
application. Table 6-4 defines the command and status registers mapped to the 
configuration port.

Table 6-4: Command and Status Registers Mapped to the Configuration Port

Port Name Direction Description

cfg_bus_number[7:0] Output Bus Number: Default value after reset is 
00h. Refreshed whenever a Type 0 
Configuration Write packet is received.

cfg_device_number[4:0] Output Device Number: Default value after reset is 
00000b. Refreshed whenever a Type 0 
Configuration Write packet is received. 

cfg_function_number[2:0] Output Function Number: Function number of the 
core, hard wired to 000b.

cfg_status[15:0] Output Status Register: Status register from the 
Configuration Space Header.

cfg_command[15:0] Output Command Register: Command register 
from the Configuration Space Header.

cfg_dstatus[15:0] Output Device Status Register: Device status 
register from the PCI Express Extended 
Capability Structure. 

cfg_dcommand[15:0] Output Device Command Register: Device control 
register from the PCI Express Extended 
Capability Structure. 

cfg_lstatus[15:0] Output Link Status Register: Link status register 
from the PCI Express Extended Capability 
Structure. 

cfg_lcommand[15:0] Output Link Command Register: Link control 
register from the PCI Express Extended 
Capability Structure. 
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Device Control and Status Register Definitions

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0]

Together, these three values comprise the core ID, which the core captures from the 
corresponding fields of inbound Type 0 Configuration Write accesses. The user application 
is responsible for using this core ID as the Requestor ID on any requests it originates, and 
using it as the Completer ID on any Completion response it sends. This core supports only 
one function; for this reason, the function number is hardwired to 000b.

cfg_status[15:0]

This bus allows the user application to read the Status register in the PCI Configuration 
Space Header. Table 6-5 defines these bits. See the PCI Express Base Specification for detailed 
information.

Table 6-5: Bit Mapping on Header Status Register 
Bit Name

cfg_status[15] Detected Parity Error

cfg_status[14] Signaled System Error

cfg_status[13] Received Master Abort

cfg_status[12] Received Target Abort

cfg_status[11] Signaled Target Abort

cfg_status[10:9] DEVSEL Timing (hardwired to 00b)

cfg_status[8] Master Data Parity Error

cfg_status[7] Fast Back-to-Back Transactions Capable (hardwired to 0)

cfg_status[6] Reserved

cfg_status[5] 66 MHz Capable (hardwired to 0)

cfg_status[4] Capabilities List Present (hardwired to 1)

cfg_status[3] Interrupt Status

cfg_status[2:0] Reserved
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cfg_command[15:0]

This bus reflects the value stored in the Command register in the PCI Configuration Space 
Header. Table 6-6 provides the definitions for each bit in this bus. See the PCI Express Base 
Specification for detailed information.

The user application must monitor the Bus Master Enable bit (cfg_command[2]) and 
refrain from transmitting requests while this bit is not set. This requirement applies only to 
requests; completions can be transmitted regardless of this bit.

cfg_dstatus[15:0]

This bus reflects the value stored in the Device Status register of the PCI Express Extended 
Capabilities Structure. Table 6-7 defines each bit in the cfg_dstatus bus. See the PCI Express 
Base Specification for detailed information.

Table 6-6: Bit Mapping on Header Command Register

Bit Name

cfg_command[15:11] Reserved

cfg_command[10] Interrupt Disable

cfg_command[9] Fast Back-to-Back Transactions Enable (hardwired to 0)

cfg_command[8] SERR Enable

cfg_command[7] IDSEL Stepping/Wait Cycle Control (hardwired to 0)

cfg_command[6] Parity Error Enable

cfg_command[5] VGA Palette Snoop (hardwired to 0)

cfg_command[4] Memory Write and Invalidate (hardwired to 0)

cfg_command[3] Special Cycle Enable (hardwired to 0)

cfg_command[2] Bus Master Enable

cfg_command[1] Memory Address Space Decoder Enable

cfg_command[0] I/O Address Space Decoder Enable

Table 6-7: Bit Mapping on PCI Express Device Status Register 
Bit Name

cfg_dstatus[15:6] Reserved

cfg_dstatus[5] Transaction Pending

cfg_dstatus[4] AUX Power Detected

cfg_dstatus[3] Unsupported Request Detected

cfg_dstatus[2] Fatal Error Detected

cfg_dstatus[1] Non-Fatal Error Detected

cfg_dstatus[0] Correctable Error Detected
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cfg_dcommand[15:0]

This bus reflects the value stored in the Device Control register of the PCI Express 
Extended Capabilities Structure. Table 6-8 defines each bit in the cfg_dcommand bus. See 
the PCI Express Base Specification for detailed information.

cfg_lstatus[15:0]

This bus reflects the value stored in the Link Status register in the PCI Express Extended 
Capabilities Structure. Table 6-9 defines each bit in the cfg_lstatus bus. See the PCI Express 
Base Specification for details.

Table 6-8: Bit Mapping of PCI Express Device Control Register 

Bit Name

cfg_dcommand[15] Reserved

cfg_dcommand[14:12] Max_Read_Request_Size

cfg_dcommand[11] Enable No Snoop

cfg_dcommand[10] Auxiliary Power PM Enable

cfg_dcommand[9] Phantom Functions Enable

cfg_dcommand[8] Extended Tag Field Enable

cfg_dcommand[7:5] Max_Payload_Size

cfg_dcommand[4] Enable Relaxed Ordering

cfg_dcommand[3] Unsupported Request Reporting Enable

cfg_dcommand[2] Fatal Error Reporting Enable

cfg_dcommand[1] Non-Fatal Error Reporting Enable

cfg_dcommand[0] Correctable Error Reporting Enable

Table 6-9: Bit Mapping of PCI Express Link Status Register

Bit Name

cfg_lstatus[15:13] Reserved

cfg_lstatus[12] Slot Clock Configuration

cfg_lstatus[11] Reserved

cfg_lstatus[10] Reserved

cfg_lstatus[9:4] Negotiated Link Width

cfg_lstatus[3:0] Link Speed
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cfg_lcommand[15:0]

This bus reflects the value stored in the Link Control register of the PCI Express Extended 
Capabilities Structure. Table 6-10 provides the definition of each bit in cfg_lcommand bus. 
See the PCI Express Base Specification for more details.

Accessing Additional Registers through the Configuration Port
Configuration registers that are not directly mapped to the user interface can be accessed 
by configuration-space address using the ports shown in Table 2-9, page 28.

The user application must supply the read address as a DWORD address, not a byte 
address. To calculate the DWORD address for a register, divide the byte address by four. For 
example: 

• The DWORD address of the Command/Status Register in the PCI Configuration Space 
Header is 01h. (The byte address is 04h.)

• The DWORD address for BAR0 is 04h. (The byte address is 10h.) 

To read any register in the configuration space shown in Table 2-2, page 19, the user 
application drives the register DWORD address onto cfg_dwaddr[9:0]. The core drives the 
content of the addressed register onto cfg_do[31:0]. The value on cfg_do[31:0] is qualified 
by signal assertion on cfg_rd_wr_done_n. Figure 6-24 illustrates an example with two 
consecutive reads from the Configuration Space.

Table 6-10:  Bit Mapping of PCI Express Link Control Register

Bit Name

cfg_lcommand[15:8] Reserved

cfg_lcommand [7] Extended Synch

cfg_lcommand [6] Common Clock Configuration

cfg_lcommand [5] Retrain Link (Reserved for an endpoint device)

cfg_lcommand [4] Link Disable

cfg_lcommand [3] Read Completion Boundary

cfg_lcommand[2] Reserved

cfg_lcommand [1:0] Active State Link PM Control

X-Ref Target - Figure 6-24

Figure 6-24: Example Configuration Space Access
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User Implemented Configuration Space
The Spartan-6 FPGA Integrated Endpoint Block for PCI Express enables users to optionally 
implement registers in the PCI Configuration Space, the PCI Express Extended 
Configuration Space, or both, in the user application. The user application is required to 
return Config Completions for all address within this space. For more information about 
enabling and customizing this feature, see Chapter 5, Generating and Customizing the 
Core.

PCI Configuration Space

If the user chooses to implement registers within 0x6C to 0xFF in the PCI Configuration 
Space, the start address of the address region they wish to implement can be defined 
during the core generation process.

The user application is responsible for generating all Completions to Configuration Reads 
and Writes from the user-defined start address to the end of PCI Configuration Space 
(0xFF). Configuration Reads to unimplemented registers within this range should be 
responded to with a Completion with 0x00000000 as the data, and configuration writes 
should be responded to with a successful Completion.

For example, to implement address range 0xC0 to 0xCF, there are several address ranges 
defined that should be treated differently depending on the access. Table 6-11 shows more 
details on this example.

PCI Express Extended Configuration Space

The starting address of the region in the PCI Express Extended Configuration Space that is 
optionally available for users to implement depends on the PCI Express Extended 
Capabilities the user has enabled in the Spartan-6 FPGA Integrated Endpoint Block for 
PCI Express, as shown in Table 6-12.

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express allows the user to select 
the start address of the user implemented PCI Express Extended Configuration Space. This 
space must be implemented in the user application. The user application is required to 
generate a CplD with 0x00000000 for Configuration Read and successful Cpl for 
Configuration Write to addresses in this selected range not implemented in the user 
application. The user can choose to implement a Configuration Space with a start address 
other than that allowed by the integrated Endpoint block for PCI Express. In such a case, 
the core returns a completion with 0x00000000 for configuration accesses to the region 
that the user has chosen to not implement. Table 6-13 illustrates this scenario.

Table 6-11: Example: User Implemented Space 0xC0 to 0xCF

Configuration Writes Configuration Reads

0x00 to 0xBF Core responds automatically Core responds automatically

0xC0 to 0xCF User application responds with 
Successful Completion

User application responds with 
register contents

0xD0 to 0xFF User application responds with 
Successful Completion

User application responds with 
0x00000000

Table 6-12: Min Start Addresses of the User Implemented Extended Capabilities

No Capabilities Selected DSN

Starting byte address available 100h 10Ch
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Table 6-13 illustrates an example Configuration of the PCI Express Extended 
Configuration Space, with these settings:

• DSN Capability Enabled

• User Implemented PCI Express Extended Configuration Space Enabled

• User Implemented PCI Express Extended Configuration Space Start Address 168h

In this configuration, the DSN Capability occupies the registers at 100h-108h. The 
remaining PCI Express Extended Configuration Space, starting at address 10Ch is 
available to the user to implement. For this example, the user has chosen to implement 
registers in the address region starting 168h. 

In this scenario, the core returns successful Completions with 0x00000000 for 
Configuration accesses to registers 10Ch-164h. Table 6-13 also illustrates a case where the 
user only implements the registers from 168h to 47Ch. In this case, the user is responsible 
for returning successful Completions with 0x00000000 for configuration accesses to 
480h-FFFh.

Additional Packet Handling Requirements
The user application must manage the following mechanisms to ensure protocol 
compliance, because the core does not manage them automatically.

Generation of Completions
The integrated Endpoint block core does not generate Completions for Memory Reads or 
I/O requests made by a remote device. The user is expected to service these completions 
according to the rules specified in the PCI Express Base Specification.

Tracking Non-Posted Requests and Inbound Completions
The Integrated Endpoint Block for PCIe does not track transmitted I/O requests or 
Memory Reads that have yet to be serviced with inbound Completions. The user 
application is required to keep track of such requests using the Tag ID or other information.

Keep in mind that one Memory Read request can be answered by several Completion 
packets. The user application must accept all inbound Completions associated with the 
original Memory Read until all requested data has been received.

The PCI Express Base Specification requires that an endpoint advertise infinite Completion 
Flow Control credits as a receiver; the endpoint can only transmit Memory Reads and I/O 
requests if it has enough space to receive subsequent Completions.

Table 6-13: Example: User Defined Start Address for Configuration Space

Configuration Space Byte Address

DSN Capability 100h - 108h

Reserved Extended Configuration Space

(Core Returns Successful Completion with 0x00000000)

10Ch - 164h

User Implemented PCI Express Extended Configuration Space 168h - 47Ch

User Implemented Reserved PCI Express Extended Configuration Space

(User application Returns Successful Completion with 0x00000000)

480h - FFFh
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The integrated Endpoint block core does not keep track of receive-buffer space for 
Completion. Rather, it sets aside a fixed amount of buffer space for inbound Completions. 
The user application must keep track of this buffer space to know if it can transmit requests 
requiring a Completion response. See Appendix E, Managing Receive-Buffer Space for 
Inbound Completions for more information.

Reporting User Error Conditions
The user application must report errors that occur during Completion handling using 
dedicated error signals on the core interface, and must observe the Device Power State 
before signaling an error to the core. If the user application detects an error (for example, a 
Completion Timeout) while the device has been programmed to a non-D0 state, the user 
application is responsible to signal the error after the device is programmed back to the D0 
state. 

After the user application signals an error, the core reports the error on the PCI Express 
Link and also sets the appropriate status bit(s) in the Configuration Space. Because status 
bits must be set in the appropriate Configuration Space register, the user application 
cannot generate error reporting packets on the transmit interface. The type of error-
reporting packets transmitted depends on whether or not the error resulted from a Posted 
or Non-Posted Request. User-reported Posted errors cause Message packets to be sent to 
the Root Complex if enabled to do so through the Device Control Error Reporting bits 
and/or the Status SERR Enable bit. User-reported non-Posted errors cause Completion 
packets with non-successful status to be sent to the Root Complex unless the error is 
regarded as an Advisory Non-Fatal Error. For more information about Advisory Non-Fatal 
Errors, see Chapter 6 of the PCI Express Base Specification. Errors on Non-Posted Requests 
can result in either Messages to the Root Complex or Completion packets with non-
Successful status sent to the original Requester.

Error Types
The user application triggers six types of errors using the signals defined in Table 2-9, 
page 28. 

• End-to-end CRC ECRC Error 

• Unsupported Request Error

• Completion Timeout Error

• Unexpected Completion Error

• Completer Abort Error

• Correctable Error

Multiple errors can be detected in the same received packet; for example, the same packet 
can be an Unsupported Request and have an ECRC error. If this happens, only one error 
should be reported. Because all user-reported errors have the same severity, the user 
application design can determine which error to report. The cfg_err_posted_n signal, 
combined with the appropriate error reporting signal, indicates what type of error-
reporting packets are transmitted. The user can signal only one error per clock cycle. See 
Figure 6-25, Figure 6-26, and Figure 6-27, and Table 6-14 and Table 6-15.
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Whenever an error is detected in a Non-Posted Request, the user application deasserts 
cfg_err_posted_n and provides header information on cfg_err_tlp_cpl_header[47:0] 
during the same clock cycle the error is reported, as illustrated in Figure 6-25. The 
additional header information is necessary to construct the required Completion with non-
Successful status. Additional information about when to assert or deassert 
cfg_err_posted_n is provided in the following sections.

If an error is detected on a Posted Request, the user application instead asserts 
cfg_err_posted_n, but otherwise follows the same signaling protocol. This results in a 
Non-Fatal Message to be sent, if enabled.

The core's ability to generate error messages can be disabled by the Root Complex issuing 
a configuration write to the Endpoint core's Device Control register and the PCI Command 
register setting the appropriate bits to 0. For more information about these registers, see 
Chapter 7 of the PCI Express Base Specification. However, error-reporting status bits are 
always set in the Configuration Space whether or not their Messages are disabled.

Table 6-14: User-Indicated Error Signaling

Reported Error cfg_err_posted_n Action

None Don’t care No Action Taken

cfg_err_ur_n 0 or 1 0: If enabled, a Non-Fatal Error 
Message is sent.

1: A Completion with a 
“status=unsupported request” is sent.

cfg_err_cpl_abort_n 0 or 1 0: If enabled, a Non-Fatal Error 
message is sent.

1: A Completion with a 
“status=unsupported request” is sent.

cfg_err_cpl_timeout_n Don’t care If enabled, a Non-Fatal Error Message 
is sent.

cfg_err_ecrc_n Don’t care If enabled, a Non-Fatal Error Message 
is sent.

cfg_err_cor_n Don’t care If enabled, a Correctable Error 
Message is sent.

Table 6-15: Possible Error Conditions for TLPs Received by the User Application

R
ec

ei
ve

d
 T

L
P

 T
yp

e

Possible Error Condition Error Qualifying Signal Status

Unsupported 
Request 

(cfg_err_ur_n)

Completion 
Abort 

(cfg_err_cpl_
abort_n)

Correctable Error 
(cfg_err_cor_n)

ECRC Error 
(cfg_err_ecrc_n)

Value to Drive on 
(cfg_err_
posted_n)

Drive Data on 
(cfg_err_tlp_cpl_

header[47:0])

Memory Write ✓ X N/A ✓ 0 No

Memory Read ✓ ✓ N/A ✓ 1 Yes

I/O ✓ ✓ N/A ✓ 1 Yes

Completion X X N/A ✓ 0 No

Notes: 
1. A checkmark indicates a possible error condition for a given TLP type. For example, users can signal Unsupported Request or ECRC Error 

for a Memory Write TLP, if these errors are detected. An X indicates not a valid error condition for a given TLP type. For example, users 
should never signal Completion Abort in response to a Memory Write TLP.
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If several non-Posted errors are signaled on cfg_err_ur_n or cfg_err_cpl_abort_n in a short 
amount of time, it is possible for the core to be unable to buffer them all. If that occurs, then 
cfg_err_cpl_rdy_n is deasserted, and the user must cease signaling those types of errors on 
the same cycle. In addition, the user must not resume signaling those types of errors until 
cfg_err_cpl_rdy_n is reasserted.
X-Ref Target - Figure 6-25

Figure 6-25: Signaling Unsupported Request for Non-Posted TLP

X-Ref Target - Figure 6-26

Figure 6-26: Signaling Unsupported Request for Posted TLP
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Completion Timeouts

The integrated Endpoint block core does not implement Completion timers; for this 
reason, the user application must track how long its pending Non-Posted Requests have 
each been waiting for a Completion and trigger timeouts on them accordingly. The core 
has no method of knowing when such a timeout has occurred, and for this reason does not 
filter out inbound Completions for expired requests. 

If a request times out, the user application must assert cfg_err_cpl_timeout_n, which 
causes an error message to be sent to the Root Complex. If a Completion is later received 
after a request times out, the user application must treat it as an Unexpected Completion.

Unexpected Completions

The integrated Endpoint block core automatically reports Unexpected Completions in 
response to inbound Completions whose Requestor ID is different than the Endpoint ID 
programmed in the Configuration Space. These completions are not passed to the user 
application. The current version of the core regards an Unexpected Completion to be an 
Advisory Non-Fatal Error (ANFE), and no message is sent. Other types of unexpected 
completions are passed to the user application, and the user determines how to handle 
these.

Completer Abort

If the user application is unable to transmit a normal Completion in response to a 
Non-Posted Request it receives, it must signal cfg_err_cpl_abort_n. The cfg_err_posted_n 
signal can also be set to 1 simultaneously to indicate Non-Posted and the appropriate 
request information placed on cfg_err_tlp_cpl_header[47:0]. This sends a Completion with 
non-Successful status to the original Requester, but does not send an Error Message. When 
in Legacy mode if the cfg_err_locked_n signal is set to 0 (to indicate the transaction causing 
the error was a locked transaction), a Completion Locked with Non-Successful status is 
sent. If the cfg_err_posted_n signal is set to 0 (to indicate a Posted transaction), no 
Completion is sent, but a Non-Fatal Error Message is sent (if enabled).

X-Ref Target - Figure 6-27

Figure 6-27: Signaling Locked Unsupported Request for Locked Non-Posted TLP
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Unsupported Request 

If the user application receives an inbound Request it does not support or recognize, it 
must assert cfg_err_ur_n to signal an Unsupported Request. The cfg_err_posted_n signal 
must also be asserted or deasserted depending on whether the packet in question is a 
Posted or Non-Posted Request. If the packet is Posted, a Non-Fatal Error Message is sent 
out (if enabled); if the packet is Non-Posted, a Completion with a non-Successful status is 
sent to the original Requester. When in Legacy mode if the cfg_err_locked_n signal is set to 
0 (to indicate the transaction causing the error was a locked transaction), a Completion 
Locked with Unsupported Request status is sent.

The Unsupported Request condition can occur for several reasons, including: 

• An inbound Memory Write packet violates the user application's programming 
model, for example, if the user application has been allotted a 4 KB address space but 
only uses 3 KB, and the inbound packet addresses the unused portion. (Note: If this 
occurs on a Non-Posted Request, the user application should use cfg_err_cpl_abort_n 
to flag the error.)

• An inbound packet uses a packet Type not supported by the user application, for 
example, an I/O request to a memory-only device. 

ECRC Error

The integrated Endpoint block core does not check the ECRC field for validity. If the user 
application chooses to check this field, and finds the CRC is in error, it can assert 
cfg_err_ecrc_n, causing a Non-Fatal Error Message to be sent. 

Flow Control Credit Information

Using the Flow Control Credit Signals
The integrated Endpoint block provides the user application with information about the 
state of the Transaction Layer transmit and receive buffer credit pools. This information 
represents the current space available, as well as the credit “limit” and “consumed” 
information for the Posted, Non-Posted, and Completion pools.

Table 2-8, page 25 defines the Flow Control Credit signals. Credit status information is 
presented on these signals:

• trn_fc_ph[7:0]

• trn_fc_pd[11:0]

• trn_fc_nph[7:0]

• trn_fc_npd[11:0]

• trn_fc_cplh[7:0]

• trn_fc_cpld[11:0] 

Collectively, these signals are referred to as trn_fc_*.  

The trn_fc_* signals provide information about each of the six credit pools defined in the 
PCI Express Base Specification: Header and Data Credits for Each of Posted, Non-Posted, 
and Completion. 
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Six different types of flow control information can be read by the user application. The 
trn_fc_sel[2:0] input selects the type of flow control information represented by the 
trn_fc_* outputs. The Flow Control Information Types are shown in Table 6-16.

The trn_fc_sel[2:0] signals can be changed on every clock cycle to indicate a different Flow 
Control Information Type. There is a two clock-cycle delay between the value of 
trn_fc_sel[2:0] changing and the corresponding Flow Control Information Type being 
presented on the trn_fc_* outputs. Figure 6-28 illustrates the timing of the Flow Control 
Credits signals.

The output values of the trn_fc_* signals represent credit values as defined in the PCI 
Express Base Specification. One Header Credit is equal to either a 3 or 4 DWORD TLP 
Header and one Data Credit is equal to 16 bytes of payload data. Initial credit information 
is available immediately after trn_lnk_up_n assertion, but before the reception of any TLP. 
Table 6-17 defines the possible values presented on the trn_fc_* signals. Initial credit 
information varies depending on the size of the receive buffers within the integrated 
Endpoint block and the Link Partner. 

Table 6-16: Flow Control Information Types

trn_fc_sel[2:0] Flow Control Information Type

000 Receive Credits Available Space

001 Receive Credits Limit 

010 Receive Credits Consumed

011 Reserved

100 Transmit Credits Available Space

101 Transmit Credit Limit

110 Transmit Credits Consumed

111 Reserved

X-Ref Target - Figure 6-28

Figure 6-28: Flow Control Credits

Table 6-17: trn_fc_* Value Definition

Header Credit Value Data Credit Value Meaning

00 – 7F 000 – 7FF User credits 

FF-80 FFF-800 Negative credits available(1)

7F 7FF Infinite credits available(1)

Notes: 
1. Only Transmit Credits Available Space indicate Negative or Infinite credits available.

trn_clk

trn_fc_sel[2:0]

trn_fc_*

000b 001b 110b

RX Avail RX Limit TX Consumed
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Receive Credit Flow Control Information

Receive Credit Flow Control Information can be obtained by setting trn_fc_sel[2:0] to 
000b, 001b, or 010b. The Receive Credit Flow Control information indicates the current 
status of the receive buffers within the integrated Endpoint block.

Receive Credits Available Space: trn_fc_sel[2:0] = 000b

Receive Credits Available space shows the credit space available in the integrated 
Endpoint block's Transaction Layer local receive buffers for each credit pool. If space 
available for any of the credit pools is exhausted, the corresponding trn_fc_* signal 
indicates a value of zero. Receive Credits Available Space returns to its initial values after 
the user application has drained all TLPs from the integrated Endpoint block.

In the case where infinite credits have been advertised to the Link Partner for a specific 
Credit pool, such as Completion Credits for Endpoints, the user application should use this 
value along with the methods described in Appendix E, Managing Receive-Buffer Space 
for Inbound Completions to avoid completion buffer overflow.

Receive Credits Limit: trn_fc_sel[2:0] = 001b

Receive Credits Limit show the credits granted to the link partner. The trn_fc_* values are 
initialized with the values advertised by the integrated Endpoint block during Flow 
Control initialization and are updated as a cumulative count as TLPs are read out of the 
Transaction Layer's receive buffers via the TRN interface. This value is referred to as 
CREDITS_ALLOCATED within the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific credit pool, the Receive 
Buffer Credits Limit for that pool will always indicate zero credits.

Receive Credits Consumed: trn_fc_sel[2:0] = 010b

Receive Buffer Credits Consumed show the credits consumed by the link partner (and 
received by the integrated Endpoint block). The initial trn_fc_* values are always zero 
and are updated as a cumulative count, as packets are received by the Transaction Layers 
receive buffers. This value is referred to as CREDITS_RECEIVED in the PCI Express Base 
Specification.

Transmit Credit Flow Control Information

Transmit Credit Flow Control Information can be obtained by setting trn_fc_sel[2:0] to 
100b, 101b, or 110b. The Transmit Credit Flow Control information indicates the current 
status of the receive buffers within the Link Partner. 

Transmit Credits Available Space: trn_fc_sel[2:0] = 100b 

Transmit Credits Available Space indicates the available credit space within the receive 
buffers of the Link Partner for each credit pool. If space available for any of the credit pools 
is exhausted, the corresponding trn_fc_* signal indicates a value of zero or negative. 
Transmit Credits Available Space returns to its initial values after the integrated Endpoint 
block has successfully sent all TLPs to the Link Partner.

If the value is negative, more header or data has been written into the integrated Endpoint 
block's local transmit buffers than the Link Partner can currently consume. Because the 
block does not allow posted packets to pass completions, a posted packet that is written is 
not transmitted if there is a completion ahead of it waiting for credits (as indicated by a 
zero or negative value). Similarly, a completion that is written is not transmitted if a posted 
packet is ahead of it waiting for credits. The user application can monitor the Transmit 

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 101
UG654 (v3.0) April 19, 2010

Power Management

Credits Available Space to ensure that these temporary blocking conditions do not occur, 
and that the bandwidth of the PCI Express Link is fully utilized by only writing packets to 
the integrated Endpoint block that have sufficient space within the Link Partner's Receive 
buffer. Non-Posted packets can always be bypassed within the integrated Endpoint block; 
so, any Posted or Completion packet written will pass Non-Posted packets waiting for 
credits. 

The Link Partner can advertise infinite credits for one or more of the three traffic types. 
Infinite credits are indicated to the user by setting the Header and Data credit outputs to 
their maximum value as indicated in Table 6-17.

Transmit Credits Limit: trn_fc_sel[2:0] = 101b

Transmit Credits Limit shows the receive buffer limits of the Link Partner for each credit 
pool.  The trn_fc_* values are initialized with the values advertised by the Link Partner 
during Flow Control initialization and are updated as a cumulative count as Flow Control 
updates are received from the Link Partner. This value is referred to as CREDITS_LIMIT in 
the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific Credit pool, the 
Transmit Buffer Credits Limit always indicates zero credits for that pool.

Transmit Credits Consumed: trn_fc_sel[2:0] = 110b

Transmit Credits Consumed show the credits consumed of the Receive Buffer of the Link 
Partner by the integrated Endpoint block. The initial value is always zero and is updated as 
a cumulative count, as packets are transmitted to the Link Partner. This value is referred to 
as CREDITS_CONSUMED in the PCI Express Base Specification.

Power Management
The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core supports these power 
management modes:

• Active State Power Management (ASPM)

• Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design 
enables the PCI Express hierarchy to seamlessly exchange power-management messages 
to save system power. All power management message identification functions are 
implemented. The sections below describe the user logic definition to support the ASPM 
and PPM modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base 
Specification.

Active State Power Management 
The Active State Power Management (ASPM) functionality is autonomous and 
transparent from a user-logic function perspective. The core supports the conditions 
required for ASPM. 
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Programmed Power Management
To achieve considerable power savings on the PCI Express hierarchy tree, the core 
supports these link states of Programmed Power Management (PPM):

• L0: Active State (data exchange state)

• L1: Higher Latency, lower power standby state

• L3: Link Off State

All PPM messages are always initiated by an upstream link partner. Programming the core 
to a non-D0 state, results in PPM messages being exchanged with the upstream link-
partner. The PCI Express Link transitions to a lower power state after completing a 
successful exchange.

PPM L0 State

The L0 state represents normal operation and is transparent to the user logic. The core 
reaches the L0 (active state) after a successful initialization and training of the PCI Express 
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1. The transition to a lower power PPM L1 state is always initiated by an upstream 
device, by programming the PCI Express device power state to D3-hot (or to D1 or D2 
if they are supported).

2. The core then throttles/stalls the user logic from initiating any new transactions on the 
user interface by deasserting trn_tdst_rdy_n. Any pending transactions on the user 
interface are however accepted fully and can be completed later.

3. The core exchanges appropriate power management messages with its link partner to 
successfully transition the link to a lower power PPM L1 state. This action is 
transparent to the user logic.

4. All user transactions are stalled for the duration of time when the device power state is 
non-D0.

5. The device power state is communicated to the user logic through the user 
configuration port interface. The user logic is responsible for performing a successful 
read operation to identify the device power state.

6. The user logic, after identifying the device power state as non-D0, can initiate a request 
through cfg_pm_wake_n to the upstream link partner to configure the device back to 
the D0 power state.

7. The user logic must poll the PME_Status bit of the PMCSR (via the Configuration 
Interface). If a PME message is not acknowledged by the host within 100 ms 
(+50%/-5%) by the host clearing the PME_Status bit, the Endpoint is required to 
retransmit. This functionality is not provided by the Spartan-6 FPGA Integrated 
Endpoint Block for PCI Express. For more information, see section 5.3.3.3.1 of the PCI 
Express Base Specification v1.1.

Note: If the upstream link partner has not configured the device to allow the generation of 
PM_PME messages (PME_En bit of PMCSR = 0), the assertion of cfg_pm_wake_n is ignored 
by the core.
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PPM L3 State

These steps outline the transition of the Integrated Endpoint Block for PCIe core to the 
PPM L3 state:

1. The core negotiates a transition to the L23 Ready Link State upon receiving a 
PME_Turn_Off message from the upstream link partner.

2. Upon receiving a PME_Turn_Off message, the Endpoint core initiates a handshake 
with the user logic through cfg_to_turnoff_n (see Table 2-8, page 25) and expects a 
cfg_turnoff_ok_n back from the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off 
Acknowledge (PME-turnoff_ack) Message by the Endpoint core to its upstream link 
partner. 

4. The Endpoint core closes all its interfaces, disables the Physical/Data- 
Link/Transaction layers and is ready for removal of power to the core.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in 
a downstream switch issues a PME_Turn_Off broadcast message.

2. When the Endpoint PIPE for PCIe core receives this TLP, it asserts cfg_to_turnoff_n to 
the user application and starts polling the cfg_turnoff_ok_n input.

3. When the user application detects the assertion of cfg_to_turnoff_n, it must complete 
any packet in progress and stop generating any new packets. After the user 
application is ready to be turned off, it asserts cfg_turnoff_ok_n to the core. After 
assertion or of cfg_turnoff_ok_n, the user application has committed to being turned 
off.

4. The Endpoint core sends a PME_TO_Ack when it detects assertion of 
cfg_turnoff_ok_n.

Generating Interrupt Requests
The integrated Endpoint block supports sending interrupt requests as either legacy 
interrupts or Message Signaled Interrupts (MSI). The mode is programmed using the MSI 
Enable bit in the Message Control Register of the MSI Capability Structure. For more 
information on the MSI capability structure, refer to section 6.8 of the PCI Local Base 
Specification v3.0. The state of the MSI Enable bit is reflected by the 
cfg_interrupt_msienable output:

• cfg_interrupt_msienable = 0: Legacy Interrupt (INTx) mode

• cfg_interrupt_msienable = 1: MSI mode

X-Ref Target - Figure 6-29

Figure 6-29: Power Management Handshaking
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If the MSI Enable bit is set to a 1, the core generates MSI requests by sending Memory Write 
TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as long 
as the Interrupt Disable bit in the PCI Command Register is set to 0:

• cfg_command[10] = 0: interrupts enabled

• cfg_command[10] = 1: interrupts disabled (request are blocked by the core)

The user application requests interrupt service in one of two ways, each of which are 
described below. The user application must determine which method to use based on the 
value of the cfg_interrupt_msienable output. When 0, the Legacy Interrupt method must 
be used; when 1, the MSI method.

The MSI Enable bit in the MSI control register and the Interrupt Disable bit in the PCI 
Command register are programmed by the Root Complex. The user application has no 
direct control over these bits. Regardless of the interrupt type used, the user initiates 
interrupt requests through the use of cfg_interrupt_n and cfg_interrupt_rdy_n as shown in 
Table 6-18.

The user application requests interrupt service in one of two ways, each of which are 
described below. 

MSI Mode
• As shown in Figure 6-30, the user application first asserts cfg_interrupt_n. 

Additionally the user application supplies a value on cfg_interrupt_di[7:0] if 
Multi-Vector MSI is enabled (see below).

• The core asserts cfg_interrupt_rdy_n to signal that the interrupt has been accepted 
and the core sends a MSI Memory Write TLP. On the following clock cycle, the user 
application deasserts cfg_interrupt_n if no further interrupts are to be sent.

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable 
Memory Write TLP. The address is taken from the Message Address and Message Upper 
Address fields of the MSI Capability Structure, while the payload is taken from the 
Message Data field. These values are programmed by system software through 
configuration writes to the MSI Capability structure. When the core is configured for 
Multi-Vector MSI, system software can permit Multi-Vector MSI messages by 
programming a non-zero value to the Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value 
of the Upper Address field in the MSI capability structure. By default, MSI messages are 
sent as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable 
Memory Write TLPs only if the system software programs a non-zero value into the Upper 
Address register.

When Multi-Vector MSI messages are enabled, the user application can override one or 
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to 
differentiate between the various MSI messages sent upstream. The number of lower-order 
bits in the Message Data field available to the user application is determined by the lesser 

Table 6-18: Interrupt Signalling

Port Name Direction Description

cfg_interrupt_n Input Assert to request an interrupt. Leave asserted until the 
interrupt is serviced. 

cfg_interrupt_rdy_n Output Asserted when the core accepts the signaled interrupt 
request. 
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of the value of the Multiple Message Capable field, as set in the CORE Generator software, 
and the Multiple Message Enable field, as set by system software and available as the 
cfg_interrupt_mmenable[2:0] core output. The core masks any bits in cfg_interrupt_di[7:0] 
which are not configured by system software via Multiple Message Enable.

This pseudo-code shows the processing required:

// Value MSI_Vector_Num must be in range: 0 ≤ MSI_Vector_Num ≤ 
(2^cfg_interrupt_mmenable)-1

if (cfg_interrupt_msienable) { // MSI Enabled
if (cfg_interrupt_mmenable > 0) { // Multi-Vector MSI Enabled
cfg_interrupt_di[7:0] = {Padding_0s, MSI_Vector_Num};

} else { // Single-Vector MSI Enabled
cfg_interrupt_di[7:0] = Padding_0s;

}
} else {

// Legacy Interrupts Enabled
}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, i.e., 1 MSI Vector Enabled, 
then cfg_interrupt_di[7:0] = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, i.e., 32 MSI Vectors Enabled, 
then cfg_interrupt_di[7:0] = {{000b}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b ≤ MSI_Vector# ≤ 11111b
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Legacy Interrupt Mode
• As shown in Figure 6-30, the user application first asserts cfg_interrupt_n and 

cfg_interrupt_assert_n to assert the interrupt. The user application should select a 
specific interrupt (INTA, INTB, INTC, or INTD) using cfg_interrupt_di[7:0] as shown 
in Table 6-19.

• The core then asserts cfg_interrupt_rdy_n to indicate the interrupt has been accepted. 
On the following clock cycle, the user application deasserts cfg_interrupt_n and, if the 
Interrupt Disable bit in the PCI Command register is set to 0, the core sends an assert 
interrupt message (Assert_INTA, Assert_INTB, and so forth).

• After the user application has determined that the interrupt has been serviced, it 
asserts cfg_interrupt_n while deasserting cfg_interrupt_assert_n to deassert the 
interrupt. The appropriate interrupt must be indicated via cfg_interrupt_di[7:0].

• The core then asserts cfg_interrupt_rdy_n to indicate the interrupt deassertion has 
been accepted. On the following clock cycle, the user application deasserts 
cfg_interrupt_n and the core sends a deassert interrupt message (Deassert_INTA, 
Deassert_INTB, and so forth).

X-Ref Target - Figure 6-30

Figure 6-30: Requesting Interrupt Service: MSI and Legacy Mode
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Clocking and Reset of the Integrated Endpoint Block Core

Reset
The Integrated Endpoint Block for PCI Express core uses sys_reset_n to reset the system, 
an asynchronous, active-Low reset signal asserted during the PCI Express Fundamental 
Reset. Asserting this signal causes a hard reset of the entire core, including the transceivers. 
After the reset is released, the core attempts to link train and resume normal operation. In 
a typical endpoint application, for example, an add-in card, a sideband reset signal is 
normally present and should be connected to sys_reset_n. For endpoint applications that 
do not have a sideband system reset signal, the initial hardware reset should be generated 
locally. Three reset events can occur in PCI Express: 

• Cold Reset. A Fundamental Reset that occurs at the application of power. The signal 
sys_reset_n is asserted to cause the cold reset of the core. 

• Warm Reset. A Fundamental Reset triggered by hardware without the removal and 
re-application of power. The sys_reset_n signal is asserted to cause the warm reset to 
the core.

• Hot Reset: In-band propagation of a reset across the PCI Express Link through the 
protocol. In this case, sys_reset_n is not used. In the case of Hot Reset, the 
received_hot_reset signal is asserted to indicate the source of the reset.

The user application interface of the core has an output signal called trn_reset_n. This 
signal is deasserted synchronously with respect to trn_clk. trn_reset_n is asserted as a 
result of any of these conditions: 

• Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset_n.

• PLL within the core: Loses lock, indicating an issue with the stability of the clock 
input. 

• Loss of Transceiver PLL Lock: The Lane 0 transceiver loses lock, indicating an issue 
with the PCI Express link.

The trn_reset_n signal deasserts synchronously with trn_clk after all of the above reasons 
are resolved, allowing the core to attempt to train and resume normal operation.

Important Note: Systems designed to the PCI Express electro-mechanical specification 
provide a sideband reset signal, which uses 3.3V signaling levels—see the FPGA device 
data sheet to understand the requirements for interfacing to such signals.

Clocking
The integrated Endpoint block core input system clock signal is called sys_clk. The core 
accepts a 100 or 125 MHz clock input. The clock frequency used must match the clock 
frequency selection in the CORE Generator software GUI. For more information, see 
Answer Record 18329. 

In a typical PCI Express solution, the PCI Express reference clock is a spread spectrum 
clock (SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be 
disabled. For more information regarding SSC and PCI Express, see section 4.3.1.1.1 of the 
PCI Express Base Specification. 
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Synchronous and Non-Synchronous Clocking

There are two ways to clock the PCI Express system: 

• Using synchronous clocking, where a shared clock source is used for all devices. 

• Using non-synchronous clocking, where each device has its own clock source.

Important Note: Xilinx recommends that designers use synchronous clocking when 
using the core. All add-in card designs must use synchronous clocking due to the 
characteristics of the provided reference clock. See the Spartan-6 FPGA GTP 
Transceivers User Guide and device data sheet for additional information regarding 
reference clock requirements. 

For synchronous clocked systems, each link partner device shares the same clock source. 
When using the 125 MHz reference clock option, an external PLL must be used to do a 
multiply of 5/4 to convert the 100 MHz clock to 125 MHz, as illustrated in Figure 6-32 and 
Figure 6-33. See Answer Record 18329 for more information about clocking requirements.

Further, even if the device is part of an embedded system, if the system uses commercial 
PCI Express root complexes or switches along with typical mother board clocking 
schemes, synchronous clocking should still be used as shown in Figure 6-32.

Figure 6-31, Figure 6-32, and Figure 6-33 illustrate high-level representations of the board 
layouts. Designers must ensure that proper coupling, termination, and so forth are used 
when laying out the board.
X-Ref Target - Figure 6-31

Figure 6-31: Spartan-6 FPGA PCI Express Gen 1 Using 100 MHz Reference Clock
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X-Ref Target - Figure 6-32

Figure 6-32: Embedded System Using 125 MHz Reference Clock

X-Ref Target - Figure 6-33

Figure 6-33: Open System Add-In Card Using 125 MHz Reference Clock
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Core Constraints

The Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® solution requires the 
specification of timing and other physical implementation constraints to meet specified 
performance requirements for PCI Express. These constraints are provided with the 
Endpoint Solution in a User Constraints File (UCF). Pinouts and hierarchy names in the 
generated UCF correspond to the provided example design.

To achieve consistent implementation results, a UCF containing these original, unmodified 
constraints must be used when a design is run through the Xilinx tools. For additional 
details on the definition and use of a UCF or specific constraints, see the Xilinx Libraries 
Guide and/or Development System Reference Guide.

Constraints provided with the integrated Endpoint block solution have been tested in 
hardware and provide consistent results. Constraints can be modified, but modifications 
should only be made with a thorough understanding of the effect of each constraint. 
Additionally, support is not provided for designs that deviate from the provided 
constraints.

Contents of the User Constraints File
Although the UCF delivered with each core shares the same overall structure and sequence 
of information, the content of each core’s UCF varies. The sections that follow define the 
structure and sequence of information in a generic UCF file. 

Part Selection Constraints: Device, Package, and Speed Grade
The first section of the UCF specifies the exact device for the implementation tools to 
target, including the specific part, package, and speed grade. In some cases, device-specific 
options can be included. The device in the UCF reflects the device chosen in the 
CORE Generator software project.

User Timing Constraints
The User Timing constraints section is not populated; it is a placeholder for the designer to 
provide timing constraints on user-implemented logic.

User Physical Constraints
The User Physical constraints section is not populated; it is a placeholder for the designer 
to provide physical constraints on user-implemented logic. 
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Core Pinout and I/O Constraints
The Core Pinout and I/O constraints section contains constraints for I/Os belonging to the 
core's System (SYS) and PCI Express (PCI_EXP) interfaces. It includes location constraints 
for pins and I/O logic as well as I/O standard constraints.

Core Physical Constraints
Physical constraints are used to limit the core to a specific area of the device and to specify 
locations for clock buffering and other logic instantiated by the core. 

Core Timing Constraints
This Core Timing constraints section defines clock frequency requirements for the core and 
specifies which nets the timing analysis tool should ignore. 

Required Modifications
Some constraints provided in the UCF utilize hierarchical paths to elements within the 
integrated Endpoint block core. These constraints assume an instance name of core for the 
core. If a different instance name is used, replace core with the actual instance name in all 
hierarchical constraints. 

For example:

Using xilinx_pcie_ep as the instance name, the physical constraint 

INST core/GT_i/tile0_gtpa1_dual_wrapper_i/gtpa1_dual_i
LOC = GTPA1_DUAL_X0Y0

becomes

INST xilinx_pcie_ep/GT_i/tile0_gtpa1_dual_wrapper_i/gtpa1_dual_i
LOC = GTPA1_DUAL_X0Y0

The provided UCF includes a line specifying attributes for the sys_reset_n pin, but it is up 
to the user to un-comment that line and provide a pin location. In addition, the UCF 
includes blank sections for constraining user-implemented logic. While the constraints 
provided adequately constrain the integrated Endpoint block core itself, they cannot 
adequately constrain user-implemented logic interfaced to the core. Additional constraints 
must be implemented by the designer.

Device Selection
The device selection portion of the UCF informs the implementation tools which part, 
package, and speed grade to target for the design. Because integrated Endpoint block cores 
are designed for specific part and package combinations, this section should not be 
modified by the designer.

The device selection section always contains a part selection line, but can also contain part 
or package-specific options. An example part selection line:

CONFIG PART = xc6slx45t-fgg484-2;
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Core I/O Assignments
This section controls the placement and options for I/Os belonging to the core's System 
(SYS) interface and PCI Express (PCI_EXP) interface. NET constraints in this section 
control the pin location and I/O options for signals in the SYS group. Locations and 
options vary depending on which derivative of the core is used and should not be changed 
without fully understanding the system requirements. 

For example: 

NET sys_clk_p LOC = Y4;
NET sys_clk_n LOC = Y3;

See Clocking and Reset of the Integrated Endpoint Block Core, page 107 for detailed 
information about reset and clock requirements. 

Each GTPA1_DUAL tile contains two transceivers. Any GTPA1_DUAL tile along the top 
edge of the device can be used with the integrated Endpoint block for PCIe. Either of the 
two transceivers in the GTPA1_DUAL tile can be used. For GTPA1_DUAL pinout 
information, see the Spartan-6 FPGA GTP Transceivers User Guide. 

INST constraints are used to control placement of signals that belong to the PCI_EXP 
group. These constraints control the location of the transceiver(s) used, which implicitly 
controls pin locations for the transmit and receive differential pair. The provided 
transceiver wrapper file consumes both transceivers in a tile even though only one is used. 

For example: 

INST core/GT_i/tile0_gtpa1_dual_wrapper_i/gtpa1_dual_i LOC = 
GTPA1_DUAL_X0Y0;

Core Physical Constraints
Physical constraints can be included in the constraints file to control the location of 
clocking and memory elements. Specific physical constraints are chosen to match each 
supported device and package combination—it is very important to leave these constraints 
unmodified except for changing the hierarchical name, as described above.

Core Timing Constraints
Timing constraints are provided for all integrated Endpoint block solutions, although they 
differ based on core configuration. In all cases they are crucial and must not be modified, 
except to specify the top-level hierarchical name. Timing constraints are divided into two 
categories:

• TIG constraints. Used on paths where specific delays are unimportant, to instruct the 
timing analysis tools to refrain from issuing Unconstrained Path warnings.

• Frequency constraints. Group clock nets into time groups and assign properties and 
requirements to those groups. 

TIG constraints example: 

NET sys_reset_n TIG;
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Clock constraints example: 

First, the input reference clock period is specified, which can be either 100 or 125 MHz 
(selected in the CORE Generator™ software GUI). 

NET sys_clk_c PERIOD = 8ns;

Next, the internally generated clock net and period is specified, which can be 100 or 
125 MHz. (Both clock constraints must be specified as having the same period.)

NET core/gt_refclk_out(0) TNM_NET = GT_REFCLK_OUT ;
TIMESPEC TS_GT_REFCLK_OUT = PERIOD GT_REFCLK_OUT 8ns HIGH 50 % ;

Relocating the Integrated Endpoint Block
While Xilinx does not provide technical support for designs whose system clock input, 
GTP transceivers, or block RAM locations are different from the provided examples, it is 
possible to relocate the core within the FPGA. The locations selected in the provided 
examples are the recommended pinouts. These locations have been chosen based on the 
proximity to the Endpoint Block, which enables meeting timing, and because they are 
conducive to layout requirements for add-in card design. If the core is moved, the relative 
location of all transceivers and clocking resources should be maintained to ensure timing 
closure.

Supported Core Pinouts
Table 7-1 defines the supported core pinouts for the available LXT part and package 
combinations. The CORE Generator software provides a UCF for the selected part and 
package that matches the content of this table.

Table 7-1: Spartan-6 FPGA LXT Pinout

Package Part GTPA1_DUAL
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CSG324

XC6SLX25T

X0Y0

0 A8 B8 A4 B4 C5 D5
XC6SLX45T

XC6SLX25T
1 C9 D9 A6 B6 C7 D7

XC6SLX45T

XC6SLX45T
X1Y0

0 A10 B10 A12 B12 C11 D11

XC6SLX45T 1 E10 F10 A14 B14 C13 D13

CSG484

XC6SLX45T
X0Y0

0 A10 B10 A6 B6 C7 D7

XC6SLX45T 1 C11 D11 A8 B8 C9 D9

XC6SLX45T
X1Y0

0 A12 B12 A14 B14 C13 D13

XC6SLX45T 1 E14 F14 A16 B16 C15 D15
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CSG484

XC6SLX75T

X0Y1

0 A10 B10 A6 B6 C7 D7XC6SLX100T

XC6SLX150T

XC6SLX75T

1 C11 D11 A8 B8 C9 D9XC6SLX100T

XC6SLX150T

XC6SLX75T

X1Y1

0 A12 B12 A14 B14 C13 D13XC6SLX100T

XC6SLX150T

XC6SLX75T

1 E14 F14 A16 B16 C15 D15XC6SLX100T

XC6SLX150T

FGG484

XC6SLX25T

X0Y0

0 B10 A10 A6 B6 C7 D7
XC6SLX45T

XC6SLX25T
1 D11 C11 A8 B8 C9 D9

XC6SLX45T

XC6SLX45T
X1Y0

0 B12 A12 A14 B14 C13 D13

XC6SLX45T 1 F12 E12 A16 B16 C15 D15

FGG484

XC6SLX75T

X0Y1

0 B10 A10 A6 B6 C7 D7XC6SLX100T

XC6SLX150T

XC6SLX75T

1 D11 C11 A8 B8 C9 D9XC6SLX100T

XC6SLX150T

XC6SLX75T

X1Y1

0 B12 A12 A14 B14 C13 D13XC6SLX100T

XC6SLX150T

XC6SLX75T

1 F12 E12 A16 B16 C15 D15XC6SLX100T

XC6SLX150T

Table 7-1: Spartan-6 FPGA LXT Pinout (Cont’d)
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FGG676

XC6SLX75T 

X0Y1

0 A10 B10 A6 B6 C7 D7XC6SLX100T

XC6SLX150T

XC6SLX75T

1 C11 D11 A8 B8 C9 D9XC6SLX100T

XC6SLX150T

XC6SLX75T

X1Y1

0 C15 D15 A18 B18 C17 D17XC6SLX100T

XC6SLX150T

XC6SLX75T

1 A16 B16 A20 B20 C19 D19XC6SLX100T

XC6SLX150T

FGG900

XC6SLX100T

X0Y1

0 A13 B13 A9 B9 C10 D10
XC6SLX150T

XC6SLX100T
1 C14 D14 A11 B11 C12 D12

XC6SLX150T

XC6SLX100T

X1Y1

0 C18 D18 A21 B21 C20 D20
XC6SLX150T

XC6SLX100T
1 A19 B19 A23 B23 C22 D22

XC6SLX150T

Table 7-1: Spartan-6 FPGA LXT Pinout (Cont’d)

Package Part GTPA1_DUAL
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FPGA Configuration

This chapter discusses how to configure the Spartan®-6 FPGA so that the device can link 
up and be recognized by the system. This information is provided so the user can choose 
the correct FPGA configuration method for the system and verify that it works as expected. 

This chapter discusses how specific requirements of the PCI Express Base Specification and 
PCI Express Card Electromechanical Specification apply to FPGA configuration. Where 
appropriate, Xilinx recommends that the user read the actual specifications for detailed 
information. This chapter is divided into four sections:

• Configuration Terminology. Defines terms used in this chapter.

• Configuration Access Time. Several specification items govern when an Endpoint 
device needs to be ready to receive configuration accesses from the host (Root 
Complex). 

• Board Power in Real-World Systems. Understanding real-world system constraints 
related to board power and how they affect the specification requirements. 

• Recommendations. Describes methods for FPGA configuration and includes sample 
problem analysis for FPGA configuration timing issues.

Configuration Terminology
In this chapter, these terms are used to differentiate between FPGA configuration and 
configuration of the PCI Express device:

• Configuration of the FPGA. FPGA configuration is used.

• Configuration of the PCI Express device. After the link is active, configuration is used.
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Configuration Access Time
In standard systems for PCI Express, when the system is powered up, configuration 
software running on the processor starts scanning the PCI Express bus to discover the 
machine topology. 

The process of scanning the PCI Express hierarchy to determine its topology is referred to 
as the enumeration process. The root complex accomplishes this by initiating configuration 
transactions to devices as it traverses and determines the topology. 

All PCI Express devices are expected to have established the link with their link partner 
and be ready to accept configuration requests during the enumeration process. As a result, 
there are requirements as to when a device needs to be ready to accept configuration 
requests after power up; if the requirements are not met, the following occurs: 

• If a device is not ready and does not respond to configuration requests, the root 
complex does not discover it and treats it as non-existent. 

• The operating system does not report the device's existence and the user's application 
is not able to communicate with the device. 

Choosing the appropriate FPGA configuration method is key to ensuring the device is able 
to communicate with the system in time to achieve link up and respond to the 
configuration accesses.

Configuration Access Specification Requirements
Two PCI Express specification items are relevant to configuration access: 

1. Section 6.6 of PCI Express Base Specification, rev 1.1 states “A system must guarantee 
that all components intended to be software visible at boot time are ready to receive 
Configuration Requests within 100 ms of the end of Fundamental Reset at the Root 
Complex.” For detailed information about how this is accomplished, see the 
specification; it is beyond the scope of this discussion. 

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The PCI 
Special Interest Group (PCI-SIG) provides the PCI Express Configuration Test Software to 
verify the device meets the requirement of being able to receive configuration accesses 
within 100 ms of the end of the fundamental reset. The software, available to any member 
of the PCI-SIG, generates several resets using the in-band reset mechanism and PERST# 
toggling to validate robustness and compliance to the specification. 

2. Section 6.6 of PCI Express Base Specification, rev 1.1 defines three parameters necessary 
“where power and PERST# are supplied.” The parameter TPVPERL applies to FPGA 
configuration timing and is defined as:

TPVPERL - PERST# must remain active at least this long after power becomes valid.

http://www.xilinx.com
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The PCI Express Base Specification does not give a specific value for TPVPERL – only its 
meaning is defined. The most common form factor used by designers with the integrated 
Endpoint block core is an ATX-based form factor. The PCI Express Card Electromechanical 
Specification focuses on requirements for ATX-based form factors. This applies to most 
designs targeted to standard desktop or server type motherboards. Figure 8-1 shows the 
relationship between Power Stable and PERST#. (This figure is based on Figure 2-10 from 
section 2.1 of PCI Express Card Electromechanical Specification, rev 1.1.) 

Section 2.6.2 of the PCI Express Card Electromechanical Specification defines TPVPREL as a 
minimum of 100 ms, indicating that from the time power is stable the system reset is 
asserted for at least 100 ms (as shown in Table 8-1).

From Figure 8-1 and Table 8-1, it is possible to obtain a simple equation to define the FPGA 
configuration time as follows:

FPGA Configuration Time ≤ TPWRVLD + TPVPERL Equation 8-1

Given that TPVPERL is defined as 100 ms minimum, this becomes:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 8-2

Note: Although TPWRVLD is included in Equation 8-2, it has yet to be defined in this discussion 
because it depends on the type of system in use. The Board Power in Real-World Systems section 
defines TPWRVLD for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do 
not cause reconfiguration of the FPGA. If the design appears to be having problems due to 
FPGA configuration, the user should issue a warm reset as a simple test, which resets the 
system, including the PCI Express link, but keeps the board powered. If the problem does 
not appear, the issue could be FPGA configuration time related.

X-Ref Target - Figure 8-1

Figure 8-1: Power Up

Table 8-1: TPVPERL Specification

Symbol Parameter Min Max Units

TPVPERL Power stable to 
PERST# inactive

100 ms

3.3 Vaux

3.3V/12V

PERST#

UG654_c8_01_030910

PCI Express Link Inactive Active

Power Stable

100 ms

TPVPERL
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Board Power in Real-World Systems
Several boards are used in PCI Express systems. The ATX Power Supply Design 
specification, endorsed by Intel, is used as a guideline and for this reason followed in the 
majority of mother boards and 100% of the time if it is an Intel-based motherboard. The 
relationship between power rails and power valid signaling is described in the ATX 12V 
Power Supply Design Guide. Figure 8-2, redrawn here and simplified to show the 
information relevant to FPGA configuration, is based on the information and diagram 
found in section 3.3 of the ATX 12V Power Supply Design Guide. For the entire diagram and 
definition of all parameters, see the ATX 12V Power Supply Design Guide.

Figure 8-2 shows that power stable indication from Figure 8-1 for the PCI Express system is 
indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay once 
the power supply has reached 95% of nominal. 

Figure 8-2 shows that power is actually valid before PWR_OK is asserted High. This is 
represented by T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide 
defines PWR_OK as 100 ms < T3 < 500 ms, indicating the following: From the point at 
which the power level reaches 95% of nominal, there is a minimum of at least 100 ms but 
no more than 500 ms of delay before PWR_OK is asserted. Remember, according to the PCI 
Express Card Electromechanical Specification, the PERST# is guaranteed to be asserted a 
minimum of 100 ms from when power is stable indicated in an ATX system by the 
assertion of PWR_OK. 

Again, the FPGA configuration time equation is:

FPGA Configuration Time ≤ TPWRVLD + 100 ms Equation 8-3

X-Ref Target - Figure 8-2

Figure 8-2: ATX Power Supply
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T2
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T4
T1 = Power On Time (T1 < 500 ms)
T2 = Risetime (0.1 ms <= T2 <= 20 ms)
T3 = PWR_OK Delay (100 ms < T3 < 500 ms)
T4 = PWR_OK risetime (T4 <= 10 ms)

95%

10%
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TPWRVLD is defined as PWR_OK delay period, that is, TPWRVLD represents the amount of 
time that power is valid in the system before PWR_OK is asserted. This time can be added 
to the amount of time the FPGA has to configure. The minimum values of T2 and T4 are 
negligible and considered zero for purposes of these calculations. For ATX-based 
motherboards, which represent the majority of real-world motherboards in use, TPWRVLD 
can be defined as:

100 ms ≤ TPWRVLD ≤ 500 ms

This provides the following requirement for FPGA configuration time in both ATX and 
non-ATX-based motherboards:

• FPGA Configuration Time ≤ 200 ms (for ATX based motherboard)

• FPGA Configuration Time ≤ 100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a TPWRVLD value of 
0 ms because it is not defined in this context. Designers with non-ATX based motherboards 
should evaluate their own power supply design to obtain a value for TPWRVLD.

This chapter assumes that the FPGA power (VCCINT) is stable before or at the same time as 
PWR_OK is asserted. If this is not the case, additional time must be subtracted from the 
available time for FPGA configuration. Xilinx recommends to avoid designing add-in 
cards that have staggered voltage regulators with long delays.

Hot-Plug Systems
Hot-plug systems generally employ the use of a hot-plug power controller located on the 
system motherboard. Many discrete hot-plug power controllers extend TPVPERL beyond 
the minimum 100 ms. Add-in card designers should consult the hot-plug power controller 
data sheet to determine the value of TPVPERL. If the hot-plug power controller is unknown, 
a TPVPERL value of 100 ms should be assumed.

Recommendations
Xilinx recommends using a Quad-SPI Flash device in Master Serial/SPI mode with a 
CCLK frequency of 33 MHz, which allows time for the FPGA configuration of the 
Spartan-6 FPGA in ATX-based motherboards. Configuration options are shown as green 
cells in Table 8-2 and Table 8-3 depending on the type of system in use. This section 
discusses these recommendations and includes sample analysis of potential problems that 
might arise during FPGA configuration. 

FPGA Configuration Times for Spartan-6 Devices
During power up, the FPGA configuration sequence is performed in four steps:

1. Wait for POR (Power on Reset) for all voltages (VccInt, Vccaux, and VccO) in the 
FPGA to trip, referred to as POR Trip Time 

2. Wait for completion (deassertion) of INIT to allow the FPGA to initialize before 
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require ≤ 50ms 

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer, and 
depends on: 

• Bitstream size

• Clock frequency

http://www.xilinx.com
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• Transfer mode used in the Flash Device

- SPI = Serial Peripheral Interface

- BPI = Byte Peripheral Interface

- PFP = Platform Flash PROMs

For detailed information about the configuration process, see the Spartan-6 FPGA 
Configuration User Guide. 

Table 8-2 and Table 8-3 show the comparative data for all Spartan-6 FPGA LXT devices 
with respect to a variety of flash devices and programming modes. The default clock rate 
for configuring the device is always 2 MHz. Any reference to a different clock rate implies 
a change in the settings of the device being used to program the FPGA. The configuration 
clock (CCLK), when driven by the FPGA, has variation and is not exact. See UG380, 
Spartan-6 FPGA Configuration Guide, for more information on CCLK tolerances.

Configuration Time Matrix: ATX Motherboards

Table 8-2 shows the configuration methods that allow the device to be configured before 
the end of the fundamental reset in ATX-based systems. The table values represent the 
bitstream transfer time only. The matrix is color-coded to show which configuration 
methods allow the device to configure within 200 ms once the FPGA initialization time is 
included. Choose a configuration method shaded in green when using ATX-based systems 
to ensure that the device is recognized.

Table 8-2: Configuration Time Matrix (ATX Motherboards): Spartan-6 FPGA 
Bitstream Transfer Time in Milliseconds

Spartan-6 FPGA Bitstream (Bits) SPIx4(1) XCF32P(2)

(Slave-SMAPx8)

XC6SLX25T 6,411,440 36 25

XC6SLX45T 11,875,104 66 45

XC6SLX75T 19,624,608 110 75

XC6SLX100T 26,543,136 148 101

XC6SLX150T 33,761,568 188 128

GREEN: Bitstream Transfer Time + FPGA INIT Time (50 ms) <= 200 ms

YELLOW: Bitstream Transfer Time + FPGA INIT Time (50 ms) > 200 ms

RED: Bitstream Transfer Time > 200 ms

Notes: 
1. CCLK assumptions: 45 MHz
2. CCLK assumptions: 33 MHz

http://www.xilinx.com
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Configuration Time Matrix: Non-ATX-Based Motherboards

Table 8-3 shows the configuration methods that allow the device to be configured before 
the end of the fundamental reset in non-ATX-based systems. This assumes TPWRVLD is 
zero. The table values represent the bitstream transfer time only. The matrix is color-coded 
to show which configuration methods allow the device to configure within 100 ms once the 
FPGA initialization time is included. Choose a configuration method shaded in green 
when using non-ATX-based systems to ensure that the device is recognized. 

For some of the larger FPGAs, it might not be possible to configure within the 100 ms 
window. In these cases, the user system needs to be evaluated to see if any margin is 
available that can be assigned to TPWRVLD.

Sample Problem Analysis
This section presents data from an ASUS PL5 system to demonstrate the relationships 
between Power Valid, FPGA Configuration, and PERST#. Figure 8-3 shows a case where 
the endpoint failed to be recognized due to a FPGA configuration time issue. Figure 8-4 
shows a successful FPGA configuration with the endpoint being recognized by the system.

Failed FPGA Recognition

Figure 8-3 illustrates a failed cold boot test using the default configuration time on an 
LX50T FPGA. In this example, the host failed to recognize the Xilinx FPGA. Although a 
second PERST# pulse assists in allowing more time for the FPGA to configure, the 
slowness of the FPGA configuration clock (2 MHz) causes configuration to complete well 
after this second deassertion. During this time, the system enumerated the bus and did not 
recognize the FPGA.

Table 8-3: Configuration Time Matrix (Generic Platforms: Non-ATX Motherboards): 
Spartan-6 FPGA Bitstream Transfer Time in Milliseconds

Spartan-6 FPGA Bitstream (Bits) SPIx4(1) XCF32P(2) 
(Slave-SMAPx8)

XC6SLX25T 6,411,440 36 25

XC6SLX45T 11,875,104 66 45

XC6SLX75T 19,624,608 110 75

XC6SLX100T 26,543,136 148 101

XC6SLX150T 33,761,568 188 128

GREEN: Bitstream Transfer Time + FPGA INIT Time (50 ms) <= 100 ms
YELLOW: Bitstream Transfer Time + FPGA INIT Time (50 ms) > 100 ms
RED: Bitstream Transfer Time > 100 ms

Notes: 
1. CCLK assumptions: 45 MHz
2. CCLK assumptions: 33 MHz
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Successful FPGA Recognition

Figure 8-4 illustrates a successful cold boot test on the same system. In this test, the CCLK 
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and 
recognized. The figure shows that the FPGA began initialization approximately 250 ns 
before PWR_OK. DONE going High shows that the FPGA was configured even before 
PWR_OK was asserted.

X-Ref Target - Figure 8-3

Figure 8-3: Default Configuration Time on LX50T Device (2 MHz Clock)

X-Ref Target - Figure 8-4

Figure 8-4: Fast Configuration Time on LX50T Device (50 MHz Clock)
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Recommendations

Workarounds for Closed Systems
For failing FPGA configuration combinations, as represented by pink cells and yellow cells 
in Table 8-2 and Table 8-3, designers might be able to work around the problem in closed 
systems or systems where they can guarantee behavior. These options are not 
recommended for products where the targeted end system is unknown. 

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This 
can be determined by capturing the signal on the board using an oscilloscope. (This is 
similar to what is shown in Figure 8-3. If multiple PERST#s are generated, this 
typically adds extra time for FPGA configuration.

Define TPERSTPERIOD as the total sum of the pulse width of PERST# and deassertion 
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or 
reconfigured with additional PERST# assertions, the TPERSTPERIOD number can be 
added to the FPGA configuration equation.

FPGA Configuration Time ≤ TPWRVLD + TPERSTPERIOD + 100 ms

2. In closed systems, it might be possible to create scripts to force the system to perform 
a warm reset after the FPGA is configured, after the initial power up sequence. This 
resets the system along with the PCI Express sub-system allowing the device to be 
recognized by the system.
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Chapter 9

Known Restrictions

This chapter describes restrictions or issues where the integrated Endpoint block deviates 
from the PCI Express Base Specification, Rev.1.1, or in cases where the specification is 
ambiguous. All issues listed in this chapter are considered low impact and are not a 
concern for most applications. The Comments sections describe where the associated 
problem might occur so that designers can decide quickly if further investigation is 
needed.

Master Data Parity Error Bit Set Incorrectly
The Master Data Parity Error bit of the Status Register is erroneously set when the Error 
Poisoned status bit is set in Completion with Data TLPs.

Area of Impact
Configuration Space

Detailed Description
Transmitting a Completion with Data TLP (CplD) with the Error Poisoned (EP) bit set to 1b 
causes the Master Data Parity Error bit (bit 8) in the Status Register (PCI Configuration 
Space Header address 0x006) to be set. This is not allowed for Endpoints.

Comments
There are no hardware-related side effects to setting the Master Data Parity Error bit.

System software effects are system dependent; however, it is unlikely that software will 
react to this bit being set in an Endpoint.

Non-Posted UpdateFC During PPM Transition
A Non-Posted UpdateFC DLLP is not sent immediately after the link transitions from 
power state L1 to L0 (due to PPM non-D0).

Area of Impact
Programmed Power Management (PPM)
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Detailed Description
When the link partner has used up all of the integrated Endpoint block’s Non-Posted 
credits, and then places the integrated Endpoint block into a non-D0 PPM state, the 
integrated Endpoint block must immediately send a Non-Posted UpdateFC DLLP 
following an exit from state L1 to L0 because of a PPM change from the non-D0 state. The 
integrated Endpoint block does not send the Non-Posted UpdateFC immediately upon 
entry to D0. It waits for an internal timer to time-out, which leads to temporary reduced 
performance.

Comments
The probability of this error occurring is extremely low. The link partner would have to 
deplete all non-posted credits in the integrated Endpoint block, and then immediately put 
the integrated Endpoint block into a non-D0 PPM state. It is unlikely that users would 
want to change to a non-D0 PPM state while there are outstanding non-posted requests.

To avoid this temporary condition of reduced performance, users should ensure there are 
no outstanding non-posted requests before moving to a non-D0 PPM state.
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Appendix A

Programmed Input/Output Example 
Design 

Programmed Input/Output (PIO) transactions are generally used by a PCI Express® 
system host CPU to access Memory Mapped Input/Output (MMIO) and Configuration 
Mapped Input/Output (CMIO) locations in the PCI Express fabric. Endpoints for 
PCI Express accept Memory and I/O Write transactions and respond to Memory and I/O 
Read transactions with Completion with Data transactions.

The PIO example design (PIO design) is included with the Endpoint for PCI Express 
generated by the CORE Generator™ software, which allows users to easily bring up their 
system board with a known established working design to verify the link and functionality 
of the board.

Note: The PIO design Port Model is shared by the Spartan®-6 FPGA Integrated Endpoint Block for 
PCI Express, Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. 
This appendix represents all the solutions generically using the name Endpoint for PCI Express (or 
Endpoint for PCIe®). 

System Overview
The PIO design is a simple target-only application that interfaces with the Endpoint for 
PCIe core’s Transaction (TRN) interface and is provided as a starting point for customers to 
build their own designs. These features are included: 

• Four transaction-specific 2 KB target regions using the internal block RAMs, 
providing a total target space of 8192 bytes

• Supports single DWORD payload Read and Write PCI Express transactions to 
32/64-bit address memory spaces and I/O space with support for completion TLPs

• Utilizes the core’s trn_rbar_hit_n[6:0] signals to differentiate between TLP 
destination Base Address Registers

• Provides separate implementations optimized for 32-bit and 64-bit TRN interfaces

Figure A-1 illustrates the PCI Express system architecture components, consisting of a 
Root Complex, a PCI Express switch device, and an Endpoint for PCIe. PIO operations 
move data downstream from the Root Complex (CPU register) to the Endpoint, and/or 
upstream from the Endpoint to the Root Complex (CPU register). In either case, the 
PCI Express protocol request to move the data is initiated by the host CPU.
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Data is moved downstream when the CPU issues a store register to a MMIO address 
command. The Root Complex typically generates a Memory Write TLP with the 
appropriate MMIO location address, byte enables and the register contents. The 
transaction terminates when the Endpoint receives the Memory Write TLP and updates the 
corresponding local register. 

Data is moved upstream when the CPU issues a load register from a MMIO address 
command. The Root Complex typically generates a Memory Read TLP with the 
appropriate MMIO location address and byte enables. The Endpoint generates a 
Completion with Data TLP once it receives the Memory Read TLP. The Completion is 
steered to the Root Complex and payload is loaded into the target register, completing the 
transaction.

PIO Hardware
The PIO design implements a 8192 byte target space in FPGA block RAM, behind the 
Endpoint for PCIe. This 32-bit target space is accessible through single DWORD I/O Read, 
I/O Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32 
TLPs. 

The PIO design generates a completion with 1 DWORD of payload in response to a valid 
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by 
the core. In addition, the PIO design returns a completion without data with successful 
status for I/O Write TLP request. 

The PIO design processes a Memory or I/O Write TLP with 1 DWORD payload by 
updating the payload into the target address in the FPGA block RAM space. 

X-Ref Target - Figure A-1

Figure A-1: System Overview

Main
Memory

PCI_BUS_X

PCI_BUS_1

PCI_BUS_0

CPU

Memory
Controller

Device

PCIe
Port

PCIe
Switch

PCIe
Endpoint

PCIe
Root Complex

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 131
UG654 (v3.0) April 19, 2010

PIO Hardware

Base Address Register Support
The PIO design supports four discrete target spaces, each consisting of a 2 KB block of 
memory represented by a separate Base Address Register (BAR). Using the default 
parameters, the CORE Generator software produces a core configured to work with the 
PIO design defined in this section, consisting of: 

• One 64-bit addressable Memory Space BAR

• One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases 
they might need to change the back-end user application depending on their system. See 
Changing CORE Generator Software Default BAR Settings for information about changing 
the default CORE Generator software parameters and the effect on the PIO design. 

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four 
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB 
dual-port block RAM. As transactions are received by the core, the core decodes the 
address and determines which of the four regions is being targeted. The core presents the 
TLP to the PIO design and asserts the appropriate bits of trn_rbar_hit_n[6:0], as defined in 
Table A-1.

Changing CORE Generator Software Default BAR Settings

Users can change the CORE Generator software parameters and continue to use the PIO 
design to create customized Verilog or VHDL source to match the selected BAR settings. 
However, because the PIO design parameters are more limited than the core parameters, 
consider these example design limitations when changing the default CORE Generator 
software parameters:

• The example design supports one I/O space BAR, one 32-bit Memory space (that 
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are 
exceeded, only the first space of a given type is active—accesses to the other spaces do 
not result in completions.

• Each space is implemented with a 2 KB memory. If the corresponding BAR is 
configured to a wider aperture, accesses beyond the 2 KB limit wrap around and 
overlap the 2 KB memory space.

• The PIO design supports one I/O space BAR, which by default is disabled, but can be 
changed if desired. 

Although there are limitations to the PIO design, Verilog or VHDL source code is provided 
so the user can tailor the example design to their specific needs. 

Table A-1: TLP Traffic Types

Block RAM TLP Transaction Type Default BAR trn_rbar_hit_n[6:0]

ep_io_mem I/O TLP transactions Disabled Disabled

ep_mem_32 32-bit address Memory 
TLP transactions

2 111_1011b

ep_mem64 64-bit address Memory 
TLP transactions

0-1 111_1100b

ep_mem_erom 32-bit address Memory 
TLP transactions destined 
for EROM

Exp. ROM 011_1111b
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TLP Data Flow
This section defines the data flow of a TLP successfully processed by the PIO design. For 
detailed information about the interface signals within the sub-blocks of the PIO design, 
see Receive Path, page 136 and Transmit Path, page 138.

The PIO design successfully processes single DWORD payload Memory Read and Write 
TLPs and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths 
larger than one DWORD are not processed correctly by the PIO design; however, the core 
does accept these TLPs and passes them along to the PIO design. If the PIO design receives 
a TLP with a length of greater than 1 DWORD, the TLP is received completely from the 
core and discarded. No corresponding completion is generated. 

Memory and I/O Write TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Write TLP, the TLP destination 
address and transaction type are compared with the values in the core BARs. If the TLP 
passes this comparison check, the core passes the TLP to the Receive TRN interface of the 
PIO design. The PIO design handles Memory writes and I/O TLP writes in different ways: 
the PIO design responds to I/O writes by generating a Completion Without Data (cpl), a 
requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive 
TRN interface also asserts the appropriate trn_rbar_hit_n[6:0] signal to indicate to the PIO 
design the specific destination BAR that matched the incoming TLP. On reception, the PIO 
design’s RX State Machine processes the incoming Write TLP and extracts the TLPs data 
and relevant address fields so that it can pass this along to the PIO design’s internal block 
RAM write request controller. 

Based on the specific trn_rbar_hit_n[6:0] signal asserted, the RX State Machine indicates to 
the internal write controller the appropriate 2 KB block RAM to use prior to asserting the 
write enable request. For example, if an I/O Write Request is received by the core targeting 
BAR0, the core passes the TLP to the PIO design and asserts trn_rbar_hit_n[0]. The RX 
State machine extracts the lower address bits and the data field from the I/O Write TLP 
and instructs the internal Memory Write controller to begin a write to the block RAM. 

In this example, the assertion of trn_rbar_hit_n[0] instructed the PIO memory write 
controller to access ep_io_mem (which by default represents 2 KB of I/O space). While the 
write is being carried out to the FPGA block RAM, the PIO design RX state machine 
deasserts the trn_rdst_rdy_n signal, causing the Receive TRN interface to stall receiving 
any further TLPs until the internal Memory Write controller completes the write to the 
block RAM. Deasserting trn_rdst_rdy_n in this way is not required for all designs using 
the core—the PIO design uses this method to simplify the control logic of the RX state 
machine. 

Memory and I/O Read TLP Processing

When the Endpoint for PCIe receives a Memory or I/O Read TLP, the TLP destination 
address and transaction type are compared with the values programmed in the core BARs. 
If the TLP passes this comparison check, the core passes the TLP to the Receive TRN 
interface of the PIO design. 

Along with the start of packet, end of packet, and ready handshaking signals, the Receive 
TRN interface also asserts the appropriate trn_rbar_hit_n[6:0] signal to indicate to the PIO 
design the specific destination BAR that matched the incoming TLP. On reception, the PIO 
design’s state machine processes the incoming Read TLP and extracts the relevant TLP 
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information and passes it along to the PIO design's internal block RAM read request 
controller. 

Based on the specific trn_rbar_hit_n[6:0] signal asserted, the RX state machine indicates to 
the internal read request controller the appropriate 2 KB block RAM to use before asserting 
the read enable request. For example, if a Memory Read 32 Request TLP is received by the 
core targeting the default MEM32 BAR2, the core passes the TLP to the PIO design and 
asserts trn_rbar_hit_n[2]. The RX State machine extracts the lower address bits from the 
Memory 32 Read TLP and instructs the internal Memory Read Request controller to start a 
read operation.

In this example, the assertion of trn_rbar_hit_n[2] instructs the PIO memory read 
controller to access the Mem32 space, which by default represents 2 KB of memory space. 
A notable difference in handling of memory write and read TLPs is the requirement of the 
receiving device to return a Completion with Data TLP in the case of memory or I/O read 
request.

While the read is being processed, the PIO design RX state machine deasserts 
trn_rdst_rdy_n, causing the Receive TRN interface to stall receiving any further TLPs until 
the internal Memory Read controller completes the read access from the block RAM and 
generates the completion. Deasserting trn_rst_rdy_n in this way is not required for all 
designs using the core. The PIO design uses this method to simplify the control logic of the 
RX state machine.

PIO File Structure
Table A-2 defines the PIO design file structure. Based on the specific core targeted, not all 
files delivered by CORE Generator software are necessary, and some files might not be 
delivered. The major difference is that some of the Endpoint for PCIe solutions use a 32-bit 
user datapath, others use a 64-bit datapath, and the PIO design works with both. The 
width of the datapath depends on the specific core being targeted. 

Two configurations of the PIO Design are provided: PIO_32 and PIO_64, with 32 and 64-bit 
TRN interfaces, respectively. The PIO configuration generated depends on the selected 
endpoint type (that is, Spartan-6 FPGA integrated Endpoint block, PIPE, PCI Express, and 

Table A-2: PIO Design File Structure 

File Description

PIO.[v|vhd] Top-level design wrapper

PIO_EP.[v|vhd] PIO application module

PIO_TO_CTRL.[v|vhd] PIO turn-off controller module

PIO_32.v 32b interface macro define

PIO_64.v 64b macro define

PIO_32_RX_ENGINE.[v|vhd] 32b Receive engine

PIO_32_TX_ENGINE.[v|vhd] 32b Transmit engine

PIO_64_RX_ENGINE.[v|vhd] 64b Receive engine

PIO_64_TX_ENGINE.[v|vhd] 64b Transmit engine

PIO_EP_MEM_ACCESS.[v|vhd] Endpoint memory access module

PIO_EP_MEM.[v|vhd] Endpoint memory
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Block Plus) as well as the number of PCI Express lanes selected by the user. Table A-3 
identifies the PIO configuration generated based on the user’s selection. 

Figure A-2 shows the various components of the PIO design, which is separated into four 
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power 
Management Turn-Off Controller.

Table A-3: PIO Configuration

Core x1 x2 x4 x8

Endpoint for PIPE PIO_32 NA NA NA

Endpoint for PCI Express (Soft-IP) PIO_32 NA PIO_64 PIO_64

Endpoint for PCI Express Block Plus PIO_64 NA PIO_64 PIO_64

Spartan-6 FPGA Integrated Endpoint Block PIO_32 NA NA NA

Virtex®-6 FPGA Integrated Block PIO_64 PIO_64 PIO_64 PIO_64

X-Ref Target - Figure A-2

Figure A-2: PIO Design Components
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PIO Application
Figure A-3 and Figure A-4 depict 64-bit and 32-bit PIO application top-level connectivity, 
respectively. The datapath width, either 32 bits or 64 bits, depends on which Endpoint for 
PCIe core is used The PIO_EP module contains the PIO FPGA block RAM memory 
modules and the transmit and receive engines. The PIO_TO_CTRL module is the Endpoint 
Turn-Off controller unit, which responds to power turn-off message from the host CPU 
with an acknowledgement.

The PIO_EP module connects to the Endpoint Transaction (TRN) and Configuration (CFG) 
interfaces.
X-Ref Target - Figure A-3

Figure A-3: PIO 64-bit Application

X-Ref Target - Figure A-4

Figure A-4: PIO 32-bit Application
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Receive Path
Figure A-5 illustrates the PIO_32_RX_ENGINE and PIO_64_RX_ENGINE modules. The 
datapath of the module must match the datapath of the core being used. These modules 
connect with Endpoint for PCIe Transaction Receive (trn_r*) interface.

The PIO_32_RX_ENGINE and PIO_64_RX_ENGINE modules receive and parse incoming 
read and write TLPs.

The RX engine parses 1 DWORD 32 and 64-bit addressable memory and I/O read requests. 
The RX state machine extracts needed information from the TLP and passes it to the 
memory controller, as defined in Table A-4. 

X-Ref Target - Figure A-5

Figure A-5: Rx Engines

Table A-4: Rx Engine: Read Outputs

Port Description

req_compl_o Completion request (active High)

req_td_o Request TLP Digest bit

req_ep_o Request Error Poisoning bit

req_tc_o[2:0] Request Traffic Class

req_attr_o[1:0] Request Attributes
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The RX Engine parses 1 DWORD 32- and 64-bit addressable memory and I/O write 
requests. The RX state machine extracts needed information from the TLP and passes it to 
the memory controller, as defined in Table A-5.

The read datapath stops accepting new transactions from the core while the application is 
processing the current TLP. This is accomplished by trn_rdst_rdy_n deassertion. For an 
ongoing Memory or I/O Read transaction, the module waits for the compl_done_i input to 
be asserted before it accepts the next TLP, while an ongoing Memory or I/O Write 
transaction is deemed complete after wr_busy_i is deasserted.

req_len_o[9:0] Request Length

req_rid_o[15:0] Request Requester Identifier

req_tag_o[7:0] Request Tag

req_be_o[7:0] Request Byte Enable

req_addr_o[10:0] Request Address

Table A-5: Rx Engine: Write Outputs

Port Description

wr_en_o Write received

wr_addr_o[10:0] Write address

wr_be_o[7:0] Write byte enable

wr_data_o[31:0] Write data

Table A-4: Rx Engine: Read Outputs (Cont’d)

Port Description
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Transmit Path
Figure A-6 shows the PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules. The 
datapath of the module must match the datapath of the core being used. These modules 
connect with the core Transaction Transmit (trn_r*) interface.

The PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules generate completions for 
received memory and I/O read TLPs. The PIO design does not generate outbound read or 
write requests. However, users can add this functionality to further customize the design.

The PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules generate completions in 
response to 1 DWORD 32 and 64-bit addressable memory and I/O read requests. 
Information necessary to generate the completion is passed to the TX Engine, as defined in 
Table A-6.

X-Ref Target - Figure A-6

Figure A-6: Tx Engines

Table A-6: Tx Engine Inputs 

Port Description

req_compl_i Completion request (active High)

req_td_i Request TLP Digest bit

req_ep_i Request Error Poisoning bit
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After the completion is sent, the TX engine asserts the compl_done_i output indicating to 
the RX engine that it can assert trn_rdst_rdy_n and continue receiving TLPs.

Endpoint Memory
Figure A-7 displays the PIO_EP_MEM_ACCESS module. This module contains the 
Endpoint memory space. 

The PIO_EP_MEM_ACCESS module processes data written to the memory from incoming 
Memory and I/O Write TLPs and provides data read from the memory in response to 
Memory and I/O Read TLPs. 

The EP_MEM module processes 1 DWORD 32- and 64-bit addressable Memory and I/O 
Write requests based on the information received from the RX Engine, as defined in 
Table A-7. While the memory controller is processing the write, it asserts the wr_busy_o 
output indicating it is busy.

req_tc_i[2:0] Request Traffic Class

req_attr_i[1:0] Request Attributes

req_len_i[9:0] Request Length

req_rid_i[15:0] Request Requester Identifier

req_tag_i[7:0] Request Tag

req_be_i[7:0] Request Byte Enable

req_addr_i[10:0] Request Address

Table A-6: Tx Engine Inputs  (Cont’d)

Port Description

X-Ref Target - Figure A-7

Figure A-7: EP Memory Access
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Both 32 and 64-bit Memory and I/O Read requests of one DWORD are processed based on 
the inputs defined in Table A-8. After the read request is processed, the data is returned on 
rd_data_o[31:0].

Table A-7: EP Memory: Write Inputs

Port Description

wr_en_i Write received

wr_addr_i[10:0] Write address

wr_be_i[7:0] Write byte enable

wr_data_i[31:0] Write data

Table A-8: EP Memory: Read Inputs 

Port Description

req_be_i[7:0] Request Byte Enable

req_addr_i[31:0] Request Address

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 141
UG654 (v3.0) April 19, 2010

PIO Operation

PIO Operation

PIO Read Transaction
Figure A-8 depicts a Back-To-Back Memory Read request to the PIO design. The receive 
engine deasserts trn_rdst_rdy_n as soon as the first TLP is completely received. The 
next Read transaction is accepted only after compl_done_o is asserted by the transmit 
engine, indicating that Completion for the first request was successfully transmitted.

X-Ref Target - Figure A-8

Figure A-8: Back-to-Back Read Transactions
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PIO Write Transaction
Figure A-9 depicts a back-to-back Memory Write to the PIO design. The next Write 
transaction is accepted only after wr_busy_o is deasserted by the memory access unit, 
indicating that data associated with the first request was successfully written to the 
memory aperture.

Device Utilization
Table A-9 shows the PIO design FPGA resource utilization.

Summary
The PIO design demonstrates the Endpoint for PCIe and its interface capabilities. In 
addition, it enables rapid bring-up and basic validation of end user Endpoint add-in card 
FPGA hardware on PCI Express platforms. Users can leverage standard operating system 
utilities that enable generation of read and write transactions to the target space in the 
reference design.

X-Ref Target - Figure A-9

Figure A-9: Back-to-Back Write Transactions

Table A-9: PIO Design FPGA Resources

Resources Utilization

LUTs 300

Flip-Flops 500

Block RAMs 4
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Root Port Model Test Bench

The Endpoint for PCI Express® Root Port Model is a robust test bench environment that 
provides a test program interface that can be used with the provided PIO design or with 
the user’s design. The purpose of the Root Port Model is to provide a source mechanism 
for generating downstream PCI Express TLP traffic to stimulate the customer design, and 
a destination mechanism for receiving upstream PCI Express TLP traffic from the customer 
design in a simulation environment. 

Note: The Root Port Model is shared by the Spartan®-6 FPGA Integrated Endpoint Block, Endpoint 
for PCI Express, Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions. 
This appendix represents all the solutions generically using the name Endpoint for PCI Express or 
Endpoint (or Endpoint for PCIe®).

Source code for the Root Port Model is included to provide the model for a starting point 
for the user test bench. All the significant work for initializing the core’s configuration 
space, creating TLP transactions, generating TLP logs, and providing an interface for 
creating and verifying tests are complete, allowing the user to dedicate efforts to verifying 
the correct functionality of the design rather than spending time developing an Endpoint 
core test bench infrastructure.

The Root Port Model consists of:

• Test Programming Interface (TPI), which allows the user to stimulate the Endpoint 
device for the PCI Express

• Example tests that illustrate how to use the test program TPI

• Verilog or VHDL source code for all Root Port Model components, which allow the 
user to customize the test bench

Figure B-1 illustrates the illustrates the Root Port Model coupled with the PIO design.
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Architecture
The Root Port Model consists of these blocks, illustrated in Figure B-1. 

• dsport (downstream port)

• usrapp_tx

• usrapp_rx

• usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and 
reception of TLPs to and from the Endpoint Design Under Test (DUT). The Endpoint DUT 
consists of the Endpoint for PCIe and the PIO design (displayed) or customer design. 

X-Ref Target - Figure B-1

Figure B-1: Root Port Model and Top-Level Endpoint
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The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI 
Express Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs 
across the PCI Express Link to the dsport block, which are subsequently passed to the 
usrapp_rx block. The dsport and core are responsible for the data link layer and physical 
link layer processing when communicating across the PCI Express logic. Both the 
usrapp_tx and usrapp_rx utilize the usrapp_com block for shared functions, for example, 
TLP processing and log file outputting. Transaction sequences or test programs are 
initiated by the usrapp_tx block to stimulate the endpoint device's fabric interface. TLP 
responses from the endpoint device are received by the usrapp_rx block. Communication 
between the usrapp_tx and usrapp_rx blocks allow the usrapp_tx block to verify correct 
behavior and act accordingly when the usrapp_rx block has received TLPs from the 
Endpoint device.

The Root Port Model has a 128-byte MPS capability in the receive direction and a 512-byte 
MPS capability in the transmit direction.

Simulating the Design
Four simulation script files are provided with the model to facilitate simulation with 
Synopsys VCS, Cadence IUS, Mentor Graphics ModelSim, and, Xilinx® ISE® Simulator 
(ISim) simulators:

• simulate_vcs.sh (Verilog only)

• simulate_ncsim.sh 

• simulate_mti.do 

• simulate_isim.bat/simulate_isim.sh 

The example simulation script files are located in this directory: 

<project_dir>/<component_name>/simulation/functional

Instructions for simulating the PIO design using the Root Port Model are provided in the 
LogiCORE IP Endpoint for PCI Express Getting Started Guide. 

For IUS users, the work construct must be manually inserted into the CDS.LIB file: 

DEFINE WORK WORK
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Test Selection
Table B-1 describes the tests provided with the Root Port Model, followed by specific 
sections for VHDL and Verilog test selection.

Table B-1: Root Port Model Provided Tests

Test Name
Test in 

VHDL/Verilog
Description

sample_smoke_test0 Verilog and 
VHDL

Issues a PCI Type 0 Configuration Read TLP and waits for the 
completion TLP; then compares the value returned with the 
expected Device/Vendor ID value. 

sample_smoke_test1 Verilog Performs the same operation as sample_smoke_test0 but makes 
use of expectation tasks. This test uses two separate test program 
threads: one thread issues the PCI Type 0 Configuration Read TLP 
and the second thread issues the Completion with Data TLP 
expectation task. This test illustrates the form for a parallel test that 
uses expectation tasks. This test form allows for confirming 
reception of any TLPs from the customer’s design. Additionally, 
this method can be used to confirm reception of TLPs when 
ordering is unimportant. 

pio_writeReadBack_test0 Verilog and 
VHDL

Transmits a 1 DWORD Write TLP followed by a 1 DWORD Read 
TLP to each of the example design’s active BARs, and then waits 
for the Completion TLP and verifies that the write and read data 
match. The test sends the appropriate TLP to each BAR based on 
the BARs address type (for example, 32 bit or 64 bit) and space type 
(for example, I/O or Memory). 

pio_testByteEnables_test0 Verilog Issues four sequential Write TLPs enabling a unique byte enable 
for each Write TLP, and then issues a 1 DWORD Read TLP to 
confirm that the data was correctly written to the example design. 
The test sends the appropriate TLP to each BAR based on the BARs 
address type (for example, 32 bit or 64 bit) and space type (for 
example, I/O or Memory).

pio_memTestDataBus Verilog Determines if the PIO design’s FPGA block RAMs data bus 
interface is correctly connected by performing a 32-bit walking 
ones data test to the first available BAR in the example design.

pio_memTestAddrBus Verilog Determines whether the PIO design's FPGA block RAM's 
address bus interface is correctly connected by performing a 
walking ones address test. This test should only be called after 
successful completion of pio_memTestDataBus.

pio_memTestDevice Verilog Checks the integrity of each bit of the PIO design’s FPGA block 
RAM by performing an increment/decrement test. This test 
should only be called after successful completion of 
pio_memTestAddrBus.

pio_timeoutFailureExpected Verilog Sends a Memory 32 Write TLP followed by Memory 32 Read TLP 
to an invalid address and waits for a Completion with data TLP. 
This test anticipates that waiting for the completion TLP times out 
and illustrates how the test programmer can gracefully handle this 
event. 

pio_tlp_test0 

(illustrative example only) 

Verilog Issues a sequence of Read and Write TLPs to the example design's 
RX interface. Some of the TLPs, for example, burst writes, are not 
supported by the PIO design.
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VHDL Test Selection
Test selection is implemented in the VHDL Root Port Model by means of overriding the 
test_selector generic within the tests entity. The test_selector generic is a string with 
a one-to-one correspondence to each test within the tests entity. 

The user can modify the generic mapping of the instantiation of the tests entity within the 
pci_exp_usrapp_tx entity. The default generic mapping is to override the 
test_selector with the test name pio_writeReadBack_test0. Currently, there are two 
tests defined inside the tests entity, sample_smoke_test0 and 
pio_writeReadBack_test0. Additional customer-defined tests should be added inside 
tests.vhd. Currently, specific tests cannot be selected from the VHDL simulation scripts. 

Verilog Test Selection
The Verilog test model used for the Root Port Model lets the user specify the name of the 
test to be run as a command line parameter to the simulator. For example, the 
simulate_ncsim.sh script file, used to start the IUS simulator explicitly specifies the 
test sample_smoke_test0 to be run using this command line syntax:

ncsim work.boardx01 +TESTNAME=sample_smoke_test0

To change the test to be run, change the value provided to TESTNAME defined in the test 
file tests.v. The same mechanism is used for VCS and ModelSim.

ISim uses the -testplusarg options to specify TESTNAME, for example:

demo_tb.exe -gui -view wave.wcfg -wdb wave_isim -tclbatch isim_cmd.tcl 
-testplusarg TESTNAME=sample_smoke_test0

VHDL and Verilog Root Port Model Differences
The following subsections identify differences between the VHDL and Verilog Root Port 
Model. 

Verilog Expectation Tasks

The most significant difference between the Verilog and the VHDL test bench is that the 
Verilog test bench has Expectation Tasks. Expectation tasks are API calls used in 
conjunction with a bus mastering customer design. The test program issues a series of 
expectation task calls; that is, the task calls expect a memory write TLP and a memory read 
TLP. If the customer design does not respond with the expected TLPs, the test program 
fails. This functionality was implemented using the fork-join construct in Verilog, which is 
not available in VHDL and subsequently not implemented. 

Verilog Command Line versus VHDL tests.vhd Module

The Verilog test bench allows test programs to be specified at the command line, while the 
VHDL test bench specifies test programs within the tests.vhd module.

Generating Wave Files

• The Verilog test bench uses recordvars and dumpfile commands within the code to 
generate wave files.

• The VHDL test bench leaves the generating wave file functionality up to the 
simulator.
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Speed Differences

The VHDL test bench is slower than the Verilog test bench, especially when testing the 
x8 core. For initial design simulation and speed enhancement, the user might want to use 
the x1 core, identify basic functionality issues, and then move to x4 or x8 simulation when 
testing design performance. 

Waveform Dumping
Table B-2 describes the available simulator waveform dump file formats, each of which is 
provided in the simulator’s native file format. The same mechanism is used for VCS and 
ModelSim.

VHDL Flow
Waveform dumping in the VHDL flow does not use the +dump_all mechanism described 
in the Verilog flow section. Because the VHDL language itself does not provide a common 
interface for dumping waveforms, each VHDL simulator has its own interface for 
supporting waveform dumping. For both the supported ModelSim and IUS flows, 
dumping is supported by invoking the VHDL simulator command line with a command 
line option that specifies the respective waveform command file, wave.do (ModelSim), 
wave.sv (IUS), and wave.wcfg (ISim). This command line can be found in the respective 
simulation script files simulate_mti.do, simulate_ncsim.sh, and 
simulate_isim.bat[.sh].

ModelSim 

This command line initiates waveform dumping for the ModelSim flow using the VHDL 
test bench:

>vsim +notimingchecks –do wave.do –L unisim –L work work.board

IUS

This command line initiates waveform dumping for the IUS flow using the VHDL test 
bench:

>ncsim –gui work.board -input @”simvision –input wave.sv”

Verilog Flow
The Root Port Model provides a mechanism for outputting the simulation waveform to file 
by specifying the +dump_all command line parameter to the simulator.

Table B-2: Simulator Dump File Format

Simulator Dump File Format

Synopsys VCS .vpd

ModelSim .vcd

Cadence IUS .trn

ISim .wdb
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For example, the script file simulate_ncsim.sh (used to start the IUS simulator) can 
indicate to the Root Port Model that the waveform should be saved to a file using this 
command line:

ncsim work.boardx01 +TESTNAME=sample_smoke_test0 +dump_all

Output Logging
When a test fails on the example or customer design, the test programmer debugs the 
offending test case. Typically, the test programmer inspects the wave file for the simulation 
and cross reference this to the messages displayed on the standard output. Because this 
approach can be very time consuming, the Root Port Model offers an output logging 
mechanism to assist the tester with debugging failing test cases to speed the process. 

The Root Port Model creates three output files (tx.dat, rx.dat, and error.dat) during 
each simulation run. Log files rx.dat and tx.dat each contain a detailed record of every 
TLP that was received and transmitted, respectively, by the Root Port Model. With an 
understanding of the expected TLP transmission during a specific test case, the test 
programmer can more easily isolate the failure. 

The log file error.dat is used in conjunction with the expectation tasks. Test programs 
that utilize the expectation tasks generate a general error message to standard output. 
Detailed information about the specific comparison failures that have occurred due to the 
expectation error is located within error.dat.

Parallel Test Programs
There are two classes of tests are supported by the Root Port Model: 

• Sequential tests. Tests that exist within one process and behave similarly to 
sequential programs. The test depicted in Test Program: pio_writeReadBack_test0, 
page 152 is an example of a sequential test. Sequential tests are very useful when 
verifying behavior that have events with a known order. 

• Parallel tests. Tests involving more than one process thread. The test 
sample_smoke_test1 is an example of a parallel test with two process threads. 
Parallel tests are very useful when verifying that a specific set of events have 
occurred, however the order of these events are not known. 

A typical parallel test uses the form of one command thread and one or more expectation 
threads. These threads work together to verify a device's functionality. The role of the 
command thread is to create the necessary TLP transactions that cause the device to receive 
and generate TLPs. The role of the expectation threads is to verify the reception of an 
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used 
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected 
by parallel test programs while using the PIO design. However, the full library of 
expectation tasks can be used for expecting any TLP type when used in conjunction with 
the customer's design (which can include bus-mastering functionality). Currently, the 
VHDL version of the Root Port Model Test Bench does not support Parallel tests.
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Test Description
The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means 
to create tests by simply invoking a series of Verilog tasks. All Root Port Model tests should 
follow the same six steps:

1. Perform conditional comparison of a unique test name

2. Set up master timeout in case simulation hangs

3. Wait for Reset and link-up

4. Initialize the configuration space of the endpoint

5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT

6. Verify that the test succeeded

Test Program: pio_writeReadBack_test0, page 152 displays the listing of a simple test 
program pio_writeReadBack_test0, written for use in conjunction with the PIO endpoint. 
This test program is located in the file pio_tests.v. As the test name implies, this test 
performs a one DWORD write operation to the PIO Design followed by a 1 DWORD read 
operation from the PIO Design, after which it compares the values to confirm that they are 
equal. The test is performed on the first location in each of the active Mem32 BARs of the 
PIO Design. For the default configuration, this test performs the write and read back to 
BAR2 and to the EROM space (BAR6) (Block Plus only). The following section outlines the 
steps performed by the test program. 

• Line 1 of the sample program determines if the user has selected the test program 
pio_writeReadBack_test1 when invoking the Verilog simulator.

• Line 4 of the sample program invokes the TPI call TSK_SIMULATION_TIMEOUT 
which sets the master timeout value to be long enough for the test to complete.

• Line 5 of the sample program invokes the TPI call TSK_SYSTEM_INITIALIZATION. 
This task causes the test program to wait for the system reset to deassert as well as the 
Endpoint's trn_lnk_up_n signal to assert. This is an indication that the Endpoint is 
ready to be configured by the test program via the Root Port Model.

• Line 6 of the sample program uses the TPI call TSK_BAR_INIT. This task performs a 
series of Type 0 Configuration Writes and Reads to the Endpoint core's PCI 
Configuration Space, determines the memory and I/O requirements of the Endpoint, 
and then programs the Endpoint's Base Address Registers so that it is ready to receive 
TLPs from the Root Port Model. 

• Lines 7, 8, and 9 of the sample program work together to cycle through all the 
Endpoint's BARs and determine whether they are enabled, and if so to determine 
their type, for example, Mem32, Mem64, or I/O). 

All PIO tests provided with the Root Port Model are written in a form that does not assume 
that a specific BAR is enabled or is of a specific type (for example, Mem32, Mem64, I/O). 
These tests perform on-the-fly BAR determination and execute TLP transactions 
dependent on BAR types (that is, Memory32 TLPs to Memory32 Space, I/O TLPs to I/O 
Space, and so forth). This means that if a user reconfigures the BARs of the Endpoint, the 
PIO continues to work because it dynamically explores and configures the BARs. Users are 
not required to follow the form used and can create tests that assume their own specific 
BAR configuration.

• Line 7 sets a counter to increment through all of the endpoint's BARs.

• Line 8 determines whether the BAR is enabled by checking the global array 
BAR_INIT_P_BAR_ENABLED[]. A non-zero value indicates that the corresponding 
BAR is enabled. If the BAR is not enabled, then test program flow moves on to check 
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the next BAR. The previous call to TSK_BAR_INIT performed the necessary 
configuration TLP communication to the endpoint device and filled in the 
appropriate values into the BAR_INIT_P_BAR_ENABLED[] array.

• Line 9 performs a case statement on the same global array 
BAR_INIT_P_BAR_ENABLED[]. If the array element is enabled (that is, non-zero), 
the element's value indicates the BAR type. A value of 1, 2, and 3 indicates I/O, 
Memory 32, and Memory 64 spaces, respectively.

If the BAR type is either I/O or Memory 64, then the test does not perform any TLP 
transactions. If the BAR type is Memory 32, program control continues to line 16 and 
starts transmitting Memory 32 TLPs.

• Lines 21-26 use the TPI call TSK_TX_MEMORY_WRITE_32 and transmits a Memory 
32 Write TLP with the payload DWORD '01020304' to the PIO endpoint.

• Lines 32-33 use the TPI calls TSK_TX_MEMORY_READ_32 followed by 
TSK_WAIT_FOR_READ_DATA in order to transmit a Memory 32 Read TLP and then 
wait for the next Memory 32 Completion with Data TLP. In case the Root Port Model 
never receives the Completion with Data TLP, the TPI call 
TSK_WAIT_FOR_READ_DATA would locally timeout and display an error message.

• Line 34 compares the DWORD received from the Completion with Data TLP with the 
DWORD that was transmitted to the PIO endpoint and displays the appropriate 
success or failure message.
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Test Program: pio_writeReadBack_test0
1. else if(testname == "pio_writeReadBack_test1")
2. begin
3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back
4. TSK_SIMULATION_TIMEOUT(10050);
5. TSK_SYSTEM_INITIALIZATION;
6. TSK_BAR_INIT;
7. for (ii = 0; ii <= 6; ii = ii + 1) begin 
8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2'b00) // bar is enabled          
9.  case(BAR_INIT_P_BAR_ENABLED[ii])
10.          2'b01 : // IO SPACE
11.     begin    
12.              $display("[%t] : NOTHING: to IO 32 Space BAR %x", $realtime, ii);
13.         end    
14.          2'b10 : // MEM 32 SPACE
15.            begin    
16.             $display("[%t] : Transmitting TLPs to Memory 32 Space BAR %x",
17.                          $realtime, ii);
18. //------------------------------------------------------------------------
19. // Event : Memory Write 32 bit TLP
20. //------------------------------------------------------------------------
21.               DATA_STORE[0] = 8'h04;
22.               DATA_STORE[1] = 8'h03;
23.               DATA_STORE[2] = 8'h02;
24.               DATA_STORE[3] = 8'h01;
25.               P_READ_DATA = 32'hffff_ffff; // make sure P_READ_DATA has known initial value 
26.               TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0] , 4'hF, 

4'hF, 1'b0);
27.               TSK_TX_CLK_EAT(10);
28.               DEFAULT_TAG = DEFAULT_TAG + 1;
29.         //------------------------------------------------------------------------
30.         // Event : Memory Read 32 bit TLP
31.         //------------------------------------------------------------------------
32.               TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10'd1, BAR_INIT_P_BAR[ii][31:0], 4'hF, 

4'hF);
33.               TSK_WAIT_FOR_READ_DATA;
34.               if  (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0] }) 
35.                 begin
36.                  $display("[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x", 

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[0]},  P_READ_DATA);
37.                end
38.             else
39.               begin
40.                  $display("[%t] : Test PASSED --- Write Data: %x successfully received", $realtime, 

P_READ_DATA);
41.               end
42.              TSK_TX_CLK_EAT(10);
43.              DEFAULT_TAG = DEFAULT_TAG + 1;
44.           end
45. 2'b11 : // MEM 64 SPACE 
46.           begin
47.             $display("[%t] : NOTHING: to Memory 64 Space BAR %x", $realtime, ii);
48.      end
49. default : $display("Error case in usrapp_tx\n");
50.     endcase
51.   end
52.  $display("[%t] : Finished transmission of PCI-Express TLPs", $realtime);
53.  $finish;

54.end
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Expanding the Root Port Model
The Root Port Model was created to work with the PIO design, and for this reason is 
tailored to make specific checks and warnings based on the limitations of the PIO design. 
These checks and warnings are enabled by default when the Root Port Model is generated 
by the CORE Generator™ software. However, these limitations can easily be disabled so 
that they do not affect the customer's design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR, 
and two Mem32 BARs (one of which must be the EROM space), the Root Port Model by 
default makes a check during device configuration that verifies that the core has been 
configured to meet this requirement. A violation of this check causes a warning message to 
be displayed as well as for the offending BAR to be gracefully disabled in the test bench. 
This check can be disabled by setting the pio_check_design variable to zero in the 
pci_exp_usrapp_tx.v file.

Root Port Model TPI Task List
The Root Port Model TPI tasks include the following, which are further defined in 
Tables B-3 through B-7.

• Test Setup Tasks

• TLP Tasks

• BAR Initialization Tasks

• Example PIO Design Tasks

• Expectation Tasks

Table B-3: Test Setup Tasks

Name Input(s) Description

TSK_SYSTEM_INITIALIZATION None Waits for transaction interface reset and 
link-up between the Root Port Model and 
the Endpoint DUT. 

This task must be invoked prior to the 
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ None Initializes global 4096 byte DATA_STORE 
array entries to sequential values from 
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 Waits clock_count transaction interface 
clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in 
units of transaction interface clocks. This 
task should be used to ensure that all DUT 
tests complete.
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Table B-4: TLP Tasks 

Name Input(s) Description

TSK_TX_TYPE0_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Waits for transaction interface reset and link-
up between the Root Port Model and the 
Endpoint DUT. 

This task must be invoked prior to Endpoint 
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_

reg_addr_

first_dw_be_

7:0

11:0

3:0

Sends a Type 1 PCI Express Config Read TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_TYPE0_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 0 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_TYPE1_CONFIGURATION_WRITE tag_

reg_addr_

reg_data_

first_dw_be_

7:0

11:0

31:0

3:0

Sends a Type 1 PCI Express Config Write TLP 
from Root Port Model to reg_addr_ of 
Endpoint DUT with tag_ and first_dw_be_ 
inputs. 

Cpl returned from the Endpoint DUT uses the 
contents of global COMPLETE_ID_CFG as the 
completion ID.

TSK_TX_MEMORY_READ_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

31:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
downstream port to 32 bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_MEMORY_READ_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

7:0

2:0

9:0

63:0

3:0

3:0

Sends a PCI Express Memory Read TLP from 
Root Port Model to 64 bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.
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TSK_TX_MEMORY_WRITE_32 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

31:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 32 bit memory address 
addr_ of Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

TSK_TX_MEMORY_WRITE_64 tag_

tc_

len_

addr_

last_dw_be_

first_dw_be_

ep_

7:0

2:0

9:0

63:0

3:0

3:0

–

Sends a PCI Express Memory Write TLP from 
Root Port Model to 64 bit memory address 
addr_ of Endpoint DUT. 

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

The global DATA_STORE byte array is used to 
pass write data to task.

TSK_TX_COMPLETION tag_

tc_

len_

comp_status_

7:0

2:0

9:0

2:0

Sends a PCI Express Completion TLP from 
Root Port Model to the Endpoint DUT using 
global COMPLETE_ID_CFG as the completion 
ID.

TSK_TX_COMPLETION_DATA tag_

tc_

len_

byte_count

lower_addr

comp_status

ep_

7:0

2:0

9:0

11:0

6:0

2:0

–

Sends a PCI Express Completion with Data 
TLP from Root Port Model to the Endpoint 
DUT using global COMPLETE_ID_CFG as the 
completion ID.

The global DATA_STORE byte array is used to 
pass completion data to task.

TSK_TX_MESSAGE tag_

tc_

len_

data

message_rtg

message_code 

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message TLP from Root 
Port Model to Endpoint DUT.

Completion returned from the Endpoint DUT 
uses the contents of global 
COMPLETE_ID_CFG as the completion ID.

TSK_TX_MESSAGE_DATA tag_

tc_

len_

data

message_rtg

message_code 

7:0

2:0

9:0

63:0

2:0

7:0

Sends a PCI Express Message with Data TLP 
from Root Port Model to Endpoint DUT.

The global DATA_STORE byte array is used to 
pass message data to task.

Completion returned from the Endpoint DUT 
uses the contents of global 
COMPLETE_ID_CFG as the completion ID.

Table B-4: TLP Tasks  (Cont’d)

Name Input(s) Description
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TSK_TX_IO_READ tag_

addr_

first_dw_be_

7:0

31:0

3:0

Sends a PCI Express I/O Read TLP from Root 
Port Model to I/O address addr_[31:2] of the 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_IO_WRITE tag_

addr_

first_dw_be_

data

7:0

31:0

3:0

31:0

Sends a PCI Express I/O Write TLP from Root 
Port Model to I/O address addr_[31:2] of the 
Endpoint DUT.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

TSK_TX_BAR_READ bar_index

byte_offset

tag_

tc_

2:0

31:0

7:0

2:0

Sends a PCI Express 1 DWORD Memory 32, 
Memory 64, or I/O Read TLP from the Root 
Port Model to the target address 
corresponding to offset byte_offset from BAR 
bar_index of the Endpoint DUT. This task 
sends the appropriate Read TLP based on how 
BAR bar_index has been configured during 
initialization. This task can only be called after 
TSK_BAR_INIT has successfully completed.

CplD returned from the Endpoint DUT uses 
the contents of global COMPLETE_ID_CFG as 
the completion ID.

Table B-4: TLP Tasks  (Cont’d)

Name Input(s) Description
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TSK_TX_BAR_WRITE bar_index

byte_offset

tag_

tc_

data_

2:0

31:0

7:0

2:0

31:0

Sends a PCI Express 1 DWORD Memory 32, 
Memory 64, or I/O Write TLP from the Root 
Port to the target address corresponding to 
offset byte_offset from BAR bar_index of the 
Endpoint DUT. 

This task sends the appropriate Write TLP 
based on how BAR bar_index has been 
configured during initialization. This task can 
only be called after TSK_BAR_INIT has 
successfully completed.

TSK_WAIT_FOR_READ_DATA None Waits for the next completion with data TLP 
that was sent by the Endpoint DUT. On 
successful completion, the first DWORD of 
data from the CplD is stored in the global 
P_READ_DATA. This task should be called 
immediately following any of the read tasks in 
the TPI that request Completion with Data 
TLPs to avoid any race conditions.

By default this task will locally time out and 
terminate the simulation after 1000 transaction 
interface clocks. The global cpld_to_finish can 
be set to zero so that local time out returns 
execution to the calling test and does not result 
in simulation timeout. For this case test 
programs should check the global cpld_to, 
which when set to one indicates that this task 
has timed out and that the contents of 
P_READ_DATA are invalid. 

Table B-4: TLP Tasks  (Cont’d)

Name Input(s) Description
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Table B-5: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address 
Register initialization tasks to the Endpoint 
device using the PCI Express fabric. Performs a 
scan of the Endpoint's PCI BAR range 
requirements, performs the necessary memory 
and I/O space mapping calculations, and finally 
programs the Endpoint so that it is ready to be 
accessed. 

On completion, the user test program can begin 
memory and I/O transactions to the device. This 
function displays to standard output a memory 
and I/O table that details how the Endpoint has 
been initialized. This task also initializes global 
variables within the Root Port Model that are 
available for test program usage. This task should 
only be called after 
TSK_SYSTEM_INITIALIZATION. 

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration 
Writes and Configuration Reads using the PCI 
Express fabric to determine the memory and I/O 
requirements for the Endpoint. 

The task stores this information in the global array 
BAR_INIT_P_BAR_RANGE[]. This task should 
only be called after 
TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm 
and allocates Memory 32, Memory 64, and I/O 
space based on the Endpoint requirements. 

This task has been customized to work in 
conjunction with the limitations of the PIO design 
and should only be called after completion of 
TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the 
Endpoint core’s PCI Base Address Registers. For 
each BAR, the BAR value, the BAR range, and 
BAR type is given. This task should only be called 
after completion of TSK_BUILD_PCIE_MAP.
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Table B-6: Example PIO Design Tasks

Name Input(s) Description

TSK_TX_READBACK_CONFIG None Performs a sequence of PCI Type 0 Configuration 
Reads to the Endpoint device's Base Address 
Registers, PCI Command Register, and PCIe 
Device Control Register using the PCI Express 
fabric. 

This task should only be called after 
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS bar_index 2:0 Tests whether the PIO design FPGA block RAM 
data bus interface is correctly connected by 
performing a 32-bit walking ones data test to the 
I/O or memory address pointed to by the input 
bar_index. 

For an exhaustive test, this task should be called 
four times, once for each block RAM used in the 
PIO design.

TSK_MEM_TEST_ADDR_BUS bar_index

nBytes

2:0

31:0

Tests whether the PIO design FPGA block RAM 
address bus interface is accurately connected by 
performing a walking ones address test starting at 
the I/O or memory address pointed to by the 
input bar_index. 

For an exhaustive test, this task should be called 
four times, once for each block RAM used in the 
PIO design. Additionally, the nBytes input should 
specify the entire size of the individual block 
RAM. 

TSK_MEM_TEST_DEVICE bar_index

nBytes

2:0

31:0

Tests the integrity of each bit of the PIO design 
FPGA block RAM by performing an 
increment/decrement test on all bits starting at 
the block RAM pointed to by the input bar_index 
with the range specified by input nBytes. 

For an exhaustive test, this task should be called 
four times, once for each block RAM used in the 
PIO design. Additionally, the nBytes input should 
specify the entire size of the individual block 
RAM. 
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Table B-7: Expectation Tasks 

Name Input(s) Output Description

TSK_EXPECT_CPLD traffic_class

td

ep

attr

length

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

9:0

15:0

2:0

-

11:0

15:0

7:0

6:0

expect status Waits for a Completion with Data 
TLP that matches traffic_class, td, 
ep, attr, length, and payload. 

Returns a 1 on successful 
completion; 0 otherwise.

TSK_EXPECT_CPL traffic_class

td

ep

attr

completer_id

completer_status

bcm

byte_count

requester_id

tag

address_low

2:0

-

-

1:0

15:0

2:0

-

11:0

15:0

7:0

6:0

Expect

status

Waits for a Completion without 
Data TLP that matches 
traffic_class, td, ep, attr, and 
length. 

Returns a 1 on successful 
completion; 0 otherwise.

TSK_EXPECT_MEMRD traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect status Waits for a 32-bit Address 
Memory Read TLP with matching 
header fields. 

Returns a 1 on successful 
completion; 0 otherwise. This task 
can only be used in conjunction 
with Bus Master designs.
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TSK_EXPECT_MEMRD64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect status Waits for a 64-bit Address 
Memory Read TLP with matching 
header fields. Returns a 1 on 
successful completion; 0 
otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_MEMWR traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

29:0

Expect

status

Waits for a 32 bit Address Memory 
Write TLP with matching header 
fields. Returns a 1 on successful 
completion; 0 otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_MEMWR64 traffic_class

td

ep

attr

length

requester_id

tag

last_dw_be

first_dw_be

address

2:0

-

-

1:0

9:0

15:0

7:0

3:0

3:0

61:0

Expect

status

Waits for a 64 bit Address Memory 
Write TLP with matching header 
fields. Returns a 1 on successful 
completion; 0 otherwise. 

This task can only be used in 
conjunction with Bus Master 
designs.

TSK_EXPECT_IOWR td

ep

requester_id

tag

first_dw_be

address

data

-

-

15:0

7:0

3:0

31:0

31:0

Expect

status

Waits for an I/O Write TLP with 
matching header fields. Returns a 
1 on successful completion; 0 
otherwise.

This task can only be used in 
conjunction with Bus Master 
designs.

Table B-7: Expectation Tasks  (Cont’d)

Name Input(s) Output Description

http://www.xilinx.com


162 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG654 (v3.0) April 19, 2010

Appendix B: Root Port Model Test Bench

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 163
UG654 (v3.0) April 19, 2010

Appendix C

Migration Considerations

Migrating a design from a LogiCORE™ Endpoint PIPE for PCI Express to a 
Spartan®-6 FPGA Integrated Endpoint Block for PCI Express is a simple process. This 
appendix describes the changes in the interfaces and signals that are necessary when 
migrating from the Spartan-3 FPGA Endpoint PIPE core to a Spartan-6 FPGA integrated 
Endpoint block core.

Integrated PHY
The first and most notable change between the Spartan-3 FPGA Endpoint PIPE core and 
the Spartan-6 FPGA integrated Endpoint block core is that the external SerDes PHY device 
that previously resided outside of the device has been integrated into the Spartan-6 
architecture. This means that all of the PXPIPE signals (33 ports) are replaced with the 
serial interface (4 ports).

System Clocking and Reset
For the Spartan-6 FPGA integrated Endpoint block, the sys_clk signal was added.

In the Spartan-3 FPGA design, the system clock was provided by the external PHY on the 
port, RXCLK. For more information about sys_clk and how to set it up, see Clocking in 
Chapter 6.

Interface Changes

Streaming Signal Added
The trn_tstr_n signal was added to the integrated Endpoint block to allow packets to be 
streamed in the transmit direction. For more information on trn_tstr_n, see Table 2-6, 
page 22.

TRN Transmit Destination Discontinue Removed
The trn_tdst_dsc_n signal has been replaced with trn_tx_terr_drop_n. The signal serves 
the same purpose to signal when a packet has been dropped. However, the signal now is 
asserted 1 to 2 clock cycles after end of the packet that was dropped. The User Application 
is not required to do anything in response to trn_terr_drop_n; it is intended for diagnosing 
problems when bringing up new designs. This makes timing significantly easier to meet.
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TRN Buffer Available Size Change
The Spartan-3 FPGA Endpoint PIPE signal trn_tbuf_av[4:0] is one bit wider. The signal is 
now trn_tbuf_av[5:0]. This change reflects the increased number of transmit buffers 
supported by the Spartan-6 FPGA core.

CMM Arbitration
The Spartan-6 FPGA integrated Endpoint block design has two signals that allow for the 
user to control the arbitration between the CMM and the TRN interfaces for transmitted 
packets. These signals are trn_tcfg_req_n and trn_tcfg_gnt_n. 

To maintain the same behavior as the Spartan-3 FPGA Endpoint PIPE, assign the signal 
trn_tcfg_gnt_n asserted (1'b0).

TRN Credit Buses Additional Functionality
The TRN credit buses have different names in the Spartan-6 FPGA integrated Endpoint 
block design. The letter “r” has been removed from the signal names. Table C-1 shows the 
old and new names.

There is also a signal named trn_fc_sel[2:0] that controls what values are placed on the 
trn_* bus.

To maintain the same behavior as the Spartan-3 FPGA Endpoint PIPE, set the 
trn_fc_sel[2:0] signal to 3'b000. For more information, see Flow Control Credit 
Information in Chapter 6.

Configuration Error Completion Ready
A signal named cfg_err_cpl_rdy_n has been added for the Spartan-6 FPGA integrated 
Endpoint block. For more information, see Table 2-9, page 28.

Configuration Error Locked
A signal named cfg_err_locked_n has been added for the Spartan-6 FPGA integrated 
Endpoint block. For more information, see Table 2-9, page 28.

Table C-1: Credit Bus Name Change from Spartan-3 to Spartan-6 Devices

Spartan-3 FPGAs Spartan-6 FPGAs

trn_rfc_nph trn_fc_nph

trn_rfc_npd trn_fc_npd

trn_rfc_ph trn_fc_ph

trn_rfc_pd trn_fc_pd

trn_rfc_cplh trn_fc_cplh

trn_rfc_cpld trn_fc_cpld
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Removed Configuration Signals
These signals were removed because they were either unused or not needed:

• cfg_di

• cfg_wr_en_n

• cfg_byte_en_n

• cfg_err_cpl_unexpected_n

Hot Reset
A signal named received_hot_reset has been added for the Spartan-6 FPGA integrated 
Endpoint block. For more information, see Table 2-3, page 20.

Block RAM Settings
The block RAM settings can now be customized. See the CORE Generator™ software GUI 
for supported settings.

Signal Change Summary
These signals have been added for the Spartan-6 FPGA integrated Endpoint block:

• sys_clk

• trn_tstr_n

• trn_tcfg_req_n

• trn_tcfg_gnt_n

• cfg_err_cpl_rdy_n

• cfg_err_locked_n

• received_hot_reset

• trn_fc_sel[2:0]

These signals have been removed from the Spartan-6 FPGA integrated Endpoint block:

• cfg_di

• cfg_wr_en_n

• cfg_byte_en_n

• cfg_err_cpl_unexpected_n

Table C-2 shows the signal name changes.

Table C-2: Signal Name Change from Spartan-3 to Spartan-6 Devices

Spartan-3 FPGAs Spartan-6 FPGAs

trn_rfc_nph trn_fc_nph

trn_rfc_npd trn_fc_npd

trn_rfc_ph trn_fc_ph

trn_rfc_pd trn_fc_pd

trn_rfc_cplh trn_fc_cplh
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trn_rfc_cpld trn_fc_cpld

trn_tbuf_av[4:0] trn_tbuf_av[5:0]

trn_tdst_dsn_n trn_tx_terr_drop_n

Table C-2: Signal Name Change from Spartan-3 to Spartan-6 Devices (Cont’d)

Spartan-3 FPGAs Spartan-6 FPGAs
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Debugging Designs

This appendix provides information on using resources available on the Xilinx Support 
website, available debug tools, and a step-by-step process for debugging designs that use 
the Spartan®-6 Integrated Endpoint Block for PCI Express®. This appendix uses flow 
diagrams to guide the user through the debug process. 

The following information is found in this appendix:

• Finding Help on Xilinx.com

• Contacting Xilinx Technical Support

• Debug Tools

• Hardware Debug

• Simulation Debug

Finding Help on Xilinx.com
To help in the design and debug process when using the Integrated Endpoint Block for PCI 
Express, the Xilinx Support webpage (www.xilinx.com/support) contains key resources 
such as Product documentation, Release Notes, Answer Records, and links to opening a 
Technical Support case.

Documentation
The Data Sheet and User Guide are the main documents associated with the 
Spartan-6 FPGA integrated Endpoint block, as shown in Table D-1. 

These Integrated Endpoint Block for PCI Express documents along with documentation 
related to all products that aid in the design process can be found on the Xilinx Support 

Table D-1: Spartan-6 FPGA Integrated Endpoint Block for PCI Express 
Documentation

Designation Description

DS

Data Sheet: provides a high-level description of the integrated Endpoint 
block and key features. It includes information on which ISE software 
version is supported by the current LogiCORE™ IP version used to 
instantiate the integrated Endpoint block.

UG

User Guide: provides information on generating an integrated Endpoint 
block design, detailed descriptions of the interface and how to use the 
product. The User Guide contains waveforms to show interactions with the 
block and other important information needed to design with the product. 

http://www.xilinx.com
http://www.xilinx.com/support
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webpage. Documentation is sorted by product family at the main support page or by 
solution at the Documentation Center. 

To see the available documentation by device family: 

• Navigate to www.xilinx.com/support.

• Select Spartan-6 from the Device List drop-down menu.  

• This will sort all available Spartan-6 FPGA documentation by Hardware 
Documentation, Configuration Solutions Documentation, Related Software 
Documentation, Tools, IP, and Data Files. 

To see the available documentation by solution:

• Navigate to www.xilinx.com/support.

• Select the Documentation tab located at the top of the webpage.  

• This is the Documentation Center where Xilinx documentation is sorted by Devices, 
Boards, IP, Design Tools, Doc Type, and Topic.  

Release Notes and Known Issues 

Known issues for all cores, including the Spartan-6 FPGA Integrated Endpoint Block for 
PCI Express, are described in the IP Release Notes Guide.

Answer Records

Answer Records include information on commonly encountered problems, helpful 
information on how to resolve these problems, and any known issues with a product.  
Answer Records are created and maintained daily ensuring users have access to the most 
up-to-date information on Xilinx products.  Answer Records can be found by searching the 
Answers Database.  

To use the Answers Database Search:

• Navigate to www.xilinx.com/support. The Answers Database Search is located at the 
top of this webpage.  

• Enter keywords in the provided search field and select Search.  

• Examples of searchable keywords are product names, error messages, or a generic 
summary of the issue encountered.  

• To see all answer records directly related to the Spartan-6 FPGA Integrated 
Endpoint Block for PCI Express, search for the phrase Spartan-6 Integrated 
Endpoint Block for PCI Express.

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
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Contacting Xilinx Technical Support 
Xilinx provides premier technical support for customers encountering issues that require 
additional assistance. 

To contact Technical Support:

• Navigate to www.xilinx.com/support.

• Open a WebCase by selecting the WebCase link located under Support Quick Links.  

When opening a WebCase, include:

• Target FPGA including package and speed grade

• All applicable software versions of the ISE tool, synthesis (if not XST), and simulator

• The xco file created during generation of the LogiCORE IP wrapper 

• This file is located in the directory targeted for the CORE Generator™ software 
project

Additional files might be required based on the specific issue. See the relevant sections in 
this debug guide for further information on specific files to include with the WebCase.

Debug Tools
There are many tools available to debug PCI Express design issues.  It is important to know 
which tools would be useful for debugging for the various situations encountered.  This 
chapter references these tools:

Example Design
Xilinx Endpoint for PCI Express products come with a synthesizable back-end application 
called the PIO design that has been tested and is proven to be interoperable in available 
systems. The design appropriately handles all incoming 1 DWORD read and write 
transactions. It returns completions for non-posted transactions and updates the target 
memory space for writes. For more information, see Appendix A, Programmed 
Input/Output Example Design.

ChipScope Pro Tool
The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software 
cores directly into the user design. The ChipScope Pro tool allows the user to set trigger 
conditions to capture application and integrated Endpoint block port signals in hardware. 
Captured signals can then be analyzed through the ChipScope Pro Logic Analyzer tool. 
For detailed information on the ChipScope Pro tool, visit www.xilinx.com/chipscope. 

Link Analyzers
Third-party link analyzers show link traffic in a graphical or text format. Lecroy, Agilent, 
and Vmetro are companies that make common analyzers available today. These tools 
greatly assist in debugging link issues and allow users to capture data which Xilinx 
support representatives can view to assist in interpreting link behavior.

http://www.xilinx.com
http://www.xilinx.com/chipscope
http://www.xilinx.com/support
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Third-Party Software Tools
This section describes third-party software tools that can be useful in debugging.

LSPCI (Linux)

LSPCI is available on Linux platforms and allows users to view the PCI Express device 
configuration space. LSPCI is usually found in the /sbin directory. LSPCI displays a list of 
devices on the PCI buses in the system. See the LSPCI manual for all command options. 
Some useful commands for debugging include:

• lspci -x -d [<vendor>]:[<device>] 

This displays the first 64 bytes of configuration space in hexadecimal form for the 
device with vendor and device ID specified (omit the -d option to display information 
for all devices). The default Vendor/Device ID for Xilinx cores is 10EE:6012. Here is a 
sample of a read of the configuration space of a Xilinx device:

> lspci -x -d 10EE:6012
81:00.0 Memory controller: Xilinx Corporation: Unknown device 6012
00: ee 10 12 60 07 00 10 00 00 00 80 05 10 00 00 00
10: 00 00 80 fa 00 00 00 00 00 00 00 00 00 00 00 00
20: 00 00 00 00 00 00 00 00 00 00 00 00 ee 10 6f 50
30: 00 00 00 00 40 00 00 00 00 00 00 00 05 01 00 00

Included in this section of the configuration space are the Device ID, Vendor ID, Class 
Code, Status and Command registers, and Base Address Registers. 

• lspci -xxxx -d [<vendor>]:[<device>] 

This displays the extended configuration space of the device. It might be useful to read 
the extended configuration space on the root and look for the Advanced Error 
Reporting (AER) registers. These registers provide more information on why the 
device has flagged an error (for example, it might show that a correctable error was 
issued because of a replay timer time-out).

• lspci -k 

Shows kernel drivers handling each device and kernel modules capable of handling it 
(works with kernel 2.6 or later).

PCItree (Windows)

PCItree can be downloaded at www.pcitree.de and allows the user to view the PCI Express 
device configuration space and perform 1 DWORD memory writes and reads to the 
aperture.

http://www.xilinx.com
http://www.pcitree.de
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The configuration space is displayed by default in the lower right corner when the device 
is selected, as shown in Figure D-1.
X-Ref Target - Figure D-1

Figure D-1: PCItree with Read of Configuration Space

http://www.xilinx.com
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HWDIRECT (Windows)

HWDIRECT can be purchased at www.eprotek.com and allows the user to view the PCI 
Express device configuration space as well as the extended configuration space (including 
the AER registers on the root).

PCI-SIG Software Suites

PCI-SIG® software suites such as PCIE-CV can be used to test compliance with the 
specification. This software can be downloaded at www.pcisig.com.

X-Ref Target - Figure D-2

Figure D-2: HWDIRECT with Read of Configuration Space

http://www.xilinx.com
http://www.eprotek.com
http://www.pcisig.com
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Debug Ports
The Spartan-6 FPGA Integrated Endpoint Block for PCI Express has debug ports described 
in Table D-3 providing insight to why the different error conditions occur. The receiver 
might detect different problems that result in either a Fatal, Non-fatal, or correctable error. 
Also, the receiver might detect an unsupported request. Four of the debug signals shown 
in Table D-2 mirror the lower four bits of the PCI Express device status register. When one 
of these conditions occurs, another signal is asserted for one clock cycle to show the reason 
causing the error.

Table D-3 defines the debug port signals.

Table D-2: Device Status Register Debug Ports

Name Device Status Bit

dbg_reg_detected_correctable Bit 0 - correctable

dbg_reg_detected_non_fatal Bit 1 - Non-Fatal

dbg_reg_detected_fatal Bit 2 - Fatal

dbg_reg_detected_unsupported Bit 3 - Unsupported Request

Table D-3: Spartan-6 FPGA Integrated Block for PCI Express Debug Ports

Port Direction Clock Domain Description

dbg_bad_dllp_status Output USERCLK This signal pulses High for one USERCLK cycle when a 
DLLP CRC error is detected.

dbg_bad_tlp_lcrc Output USERCLK This signal pulses High for one USERCLK cycle when a 
TLP with an LCRC error is detected.

dbg_bad_tlp_seq_num Output USERCLK This signal pulses High for one USERCLK cycle when a 
TLP with an invalid sequence number is detected.

dbg_bad_tlp_status Output USERCLK This signal pulses High for one USERCLK cycle when a 
bad TLP is detected, for reasons other than a bad LCRC 
or a bad sequence number.

dbg_dl_protocol_status Output USERCLK This signal pulses High for one USERCLK cycle if an out-
of-range ACK or NAK is received.

dbg_fc_protocol_err_status Output USERCLK This signal pulses High for one USERCLK cycle if there 
is a protocol error with the received flow control updates.

dbg_mlfrmd_length Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a received TLP had a length that did not 
match what was in the TLP header.

dbg_mlfrmd_mps Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a received TLP had a length in violation of 
the negotiated MPS.

dbg_mlfrmd_tcvc Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a received TLP had an invalid TC or VC 
value.

dbg_mlfrmd_tlp_status Output USERCLK This signal pulses High for one USERCLK cycle when a 
malformed TLP is received. See the other 
DBGMLFRMD* signals for further clarification.

Note: There is skew between DBGMLFRMD* and 
DBGMLFRMDTLPSTATUS.

http://www.xilinx.com
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Using the Debug Ports
The debug ports are outputs on the integrated Endpoint block and users can access them 
by opening the wrapper source file in the source directory. This file is named 
<corename>.v[hd] where <corename> represents core name entered in the 
CORE Generator tool. Signals are defined for each of these ports as either wires in the 
Verilog version or signals in the VHDL version. 

dbg_mlfrmd_unrec_type Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a received TLP had an 
invalid/unrecognized type field value.

dbg_poistlpstatus Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a TLP was received with the EP (poisoned) 
status bit set.

dbg_rcvr_overflow_status Output USERCLK This signal pulses High for one USERCLK cycle if a 
received TLP violates the advertised credit.

dbg_reg_detected_correctable Output USERCLK This signal is a mirror of the internal signal used to 
indicate a correctable error is detected. The error is 
cleared upon a read by the Root Complex (RC).

dbg_reg_detected_fatal Output USERCLK This signal is a mirror of the internal signal used to 
indicate that a fatal error has been detected. The error is 
cleared upon a read by the RC.

dbg_reg_detected_non_fatal Output USERCLK This signal is a mirror of the internal signal used to 
indicate that a non-fatal error has been detected. The 
error is cleared upon a read by the RC.

dbg_reg_detected_unsupported Output USERCLK This signal is a mirror of the internal signal used to 
indicate that an unsupported request has been detected. 
The error is cleared upon a read by the RC.

dbg_rply_rollover_status Output USERCLK This signal pulses High for one USERCLK cycle when 
the rollover counter expires.

dbg_rply_timeout_status Output USERCLK This signal pulses High for one USERCLK cycle when 
the replay time-out counter expires.

dbg_ur_no_bar_hit Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a received read or write request did not 
match any configured BAR.

dbg_ur_pois_cfg_wr Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that a CfgWr TLP with the Error/Poisoned bit 
(EP) = 1 was received.

dbg_ur_status Output USERCLK This signal pulses High for one USERCLK cycle when an 
unsupported request is received. See the DBGUR* 
signals for further clarification.

Note: There is skew between DBGUR* and 
DBGURSTATUS.

dbg_ur_unsup_msg Output USERCLK This signal pulses High for one USERCLK cycle to 
indicate that an Msg or MsgD TLP with an unsupported 
type was received.

Table D-3: Spartan-6 FPGA Integrated Block for PCI Express Debug Ports (Cont’d)

Port Direction Clock Domain Description

http://www.xilinx.com
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The debug ports can be used in both simulation and in hardware to debug problems. In 
simulation, these signals can easily be added to the waveform viewer without any changes 
to the code because they are already defined in the wrapper file. In hardware, users might 
want to use the ChipScope Pro tool to monitor these signals or probe them to external ports 
or add additional logic such as counters to enable more in depth analysis. Users might 
need to bring these signals to upper layers in the design and this can be done by modifying 
the port description and instantiations of the files.

Figure D-3 shows a common problem faced by many users. This illustrates the behavior of 
the debug ports when a non-fatal error condition occurs. The scenario is a memory write is 
sent from the downstream port to the Spartan-6 FPGA Endpoint. This memory write does 
not correctly target any of the available BARs in the design. This results in a non-fatal error 
condition. However, there are other reasons that cause a non-fatal error, so monitoring the 
cfg_dev_status_nonfatal_err_detected output of the core might not be sufficient to debug 
the problem. By using the debug ports, the user can see that the non-fatal error was caused 
by a BAR miss due to dbg_ur_no_bar_hit asserted for one cycle.

In the ChipScope tool, the user needs to decide how best to trigger the ChipScope tool to 
capture these problems. There are various ways to do this, but one suggestion would be to 
use the signals in Table D-3 as triggers. At least one of these signals is asserted. When the 
ChipScope tool triggers, the rest of the signals can be analyzed to find out exactly what 
caused the error condition.

Hardware Debug
Hardware issues can range from device recognition issues to problems seen after hours of 
testing. This section provides debug flow diagrams for some of the most common issues 
experienced by users. Endpoints that are shaded gray indicate that more information can 
be found in sections after Figure D-4.

X-Ref Target - Figure D-3

Figure D-3: Debug Wave Screenshot

http://www.xilinx.com
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X-Ref Target - Figure D-4

Figure D-4: Design Fails in Hardware Debug Flow Diagram

Design Fails in Hardware

Does a soft reset fix the problem?
(trn_lnk_up=0)

No

Is trn_reset_n deasserted?
(trn_reset_n = 1)

No

Is trn_lnk_up_n asserted?
(trn_lnk_up_n = 0)

No

To eliminate FPGA configuration 
as a root cause, perform a soft 
restart of the system. Performing a
soft reset on the system will keep
power applied and forces 
re-enumeration of the device.

One reason trn_reset_n stays 
asserted other than the system
reset being asserted, is due to a 
faulty clock. This may keep the
PLL from locking which holds
trn_reset_n asserted.

Yes
See “Link is Training Debug” section.

Yes

Yes

See "FPGA Configuration Time 
Debug" section.

Is it a multi-lane link?

Multi-lane links are susceptible to
crosstalk and noise when all lanes
are switching during training.
A quick test for this is forcing one
lane operation. This can be done 
by using an interposer or adapter
to isolate the upper lanes or use 
a tape such as Scotch tape and
tape off the upper lanes on the
connector. If its a embedded board,
remove the AC capacitors if
possible to isolate the lanes.

Yes Force x1 Operation

Does trn_lnk_up_n = 0 when using
as x1 only?

There are potentially problems 
with the board layout causing 
interference when all lanes are 
switching. See board debug 
suggestions.

Yes

No

No

No

Do you have a link analyzer?

Use the link analyzer to monitor the training 
sequence and to determine the point of failure.
Have the analyzer trigger on the first TS1 that it 
recognizes and then compare the output to the 
LTSSM state machine sequences outlined in 
Chapter 4 of the PCI Express Base Specification.

Yes

The ChipScope tool may be used to try and 
determine the point of failure. 

Using probes, an LED, ChipScope
or some other method, determine if
trn_lnk_up_n is asserted. When
trn_lnk_up_n is low, it indicates
the core has achieved link up
meaning the LTSSM is in L0 state
and the data link layer is in the
DL_Active state.

See "Clock Debug" section.
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FPGA Configuration Time Debug
Device initialization and configuration issues can be caused by not having the FPGA 
configured fast enough to enter link training and be recognized by the system. Section 6.6 
of PCI Express Base Specification, v1.1 states two rules that might be impacted by FPGA 
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the 
Fundamental reset. 

• A system must guarantee that all components intended to be software visible at boot 
time are ready to receive Configuration Requests within 100 ms of the end of 
Conventional Reset at the Root Complex.

These statements basically mean there is a finite time in which the FPGA must be 
configured by, and not meeting these requirements could cause problems with link 
training and device recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG. 
When using JTAG to configure the device, configuration typically occurs after the Chipset 
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to 
restart enumeration and configuration of the device. A soft reset on a Windows based PC 
is performed by going to Start -> Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, perform a soft restart of the system. 
Performing a soft reset on the system keeps power applied and forces re-enumeration of 
the device. If the device links up and is recognized after a soft reset is performed, then 
FPGA configuration is most likely the problem. Most typical systems use ATX power 
supplies which provides some margin on this 100 ms window as the power supply is 
normally valid before the 100 ms window starts. For more information on FPGA 
configuration, see Chapter 8, FPGA Configuration.

http://www.xilinx.com
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Link is Training Debug
X-Ref Target - Figure D-5

Figure D-5: Link Trained Debug Flow Diagram

 Link is Training
(trn_lnk_up_n = 0)

Is the device recognized by the system?
Can it be seen by PCITREE (Windows) or

lspci (Linux)?

 

 Does a soft reset fix the problem?
(trn_lnk_up=0)

No

 
To eliminate FGPA configuration 
as a root cause, perform a soft 
restart of the system. Performing a
soft reset on the system will keep
power applied and forces 
re-enumeration of the device.
If this fixes the problem, then it is 
likely the FPGA is not configured in
time for the host to access the card.

Yes

Yes

 Does using the PIO example
design fix the problem?

No

No

No
Do you have a link analyzer?

Does mirroring the PIO 
CORE Generator GUI settings for
the user design fix the problem?

PCITREE and lspci will scan the
the system and display devices
recognized during startup. These
tools show the PCI configuration
space and its settings within
the device.

Yes

The PIO design is known to work.
Often, the PIO design will work when
a user design will not. This usually
indicates some parameter or resource
conflict due to settings used for the
user design configuration. 
It is recommended to mirror the PIO
CORE Generator GUI settings into 
the user design. Even though the
design may not function, it should 
still be recognized by the system.

Yes

Check for configuration settings
conflict. See the "Debugging 

PCI Configuration Space Parameters" 
section.

Yes

If the PIO design works, but mirroring the 
configuration parameters does not fix the 

problem, then attention should be focused on
the user application design. See the "Application

Requirements" section.

No

With no link analyzer, it is possible to use
ChipScope to gather the same information. 

 

See "FPGA Configuration Time 
Debug" section.

It is likely, the problem is due to the device
not responding properly to some type of access. A

link analyzer allows you to view the link traffic 
and determine if something is incorrect. See 

the "Using a Link Analyzer to Debug 
Device Recognition Issues” section.

See “Data Transfer Failing Debug”
section.
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FPGA Configuration Time Debug

Device initialization and configuration issues can be caused by not having the FPGA 
configured fast enough to enter link training and be recognized by the system. Section 6.6 
of PCI Express Base Specification, v2.0 states two rules that might be impacted by FPGA 
Configuration Time:

• A component must enter the LTSSM Detect state within 20 ms of the end of the 
Fundamental reset. 

• A system must guarantee that all components intended to be software visible at boot 
time are ready to receive Configuration Requests within 100 ms of the end of 
Conventional Reset at the Root Complex.

These statements basically mean there is a finite time in which the FPGA must be 
configured by, and not meeting these requirements could cause problems with link 
training and device recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG. 
When using JTAG to configure the device, configuration typically occurs after the Chipset 
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to 
restart enumeration and configuration of the device. A soft reset on a Windows based PC 
is performed by going to Start -> Shut Down and then selecting Restart. 

To eliminate FPGA configuration as a root cause, perform a soft restart of the system. 
Performing a soft reset on the system keeps power applied and forces re-enumeration of 
the device. If the device links up and is recognized after a soft reset is performed, then 
FPGA configuration is most likely the problem. Most typical systems use ATX power 
supplies which provides some margin on this 100 ms window as the power supply is 
normally valid before the 100 ms window starts. For more information on FPGA 
configuration, see Chapter 8, FPGA Configuration.

Debugging PCI Configuration Space Parameters

Often, a user application fails to be recognized by the system, but the Xilinx PIO Example 
design works. In these cases, the user application is often using a PCI configuration space 
setting that is interfering with the system systems ability to recognize and allocate 
resources to the card.

Xilinx PCI Express solutions handle all configuration transactions internally and generate 
the correct responses to incoming configuration requests. Chipsets have limits as to the 
amount of system resources they can allocate, and the core must be configured to adhere to 
these limitations. 

The resources requested by the endpoint are identified by the BAR settings within the 
Endpoint configuration space. Verify that the resources requested in each BAR can be 
allocated by the chipset. I/O BARs are especially limited so configuring a large I/O BAR 
typically prevents the chipset from configuring the device. Generate a core that 
implements a small amount of Memory (approximately 2 KB) to identify if this is the root 
cause.

The Class Code setting selected in the CORE Generator software GUI can also affect 
configuration. The Class Code informs the Chipset as to what type of device the Endpoint 
is. Chipsets might expect a certain type of device to be plugged into the PCI Express slot 
and configuration might fail if it reads an unexpected Class Code. The BIOS could be 
configurable to workaround this issue.

Use the PIO design with default settings to rule out any device allocation issues. The PIO 
design default settings have proven to work in all systems encountered when debugging 
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problems. If the default settings allow the device to be recognized, then change the PIO 
design settings to match the intended user application by changing the PIO configuration 
the CORE Generator software GUI. Trial and error might be required to pinpoint the 
problem if a link analyzer is not available.

Using a link analyzer, it is possible to monitor the link traffic and possibly determine when 
during the enumeration and configuration process problems occur.

Application Requirements

During enumeration, it is possible for the chipset to issue TLP traffic that is passed from the 
core to the backend application. A common oversight when designing custom backend 
applications is to not have logic which handles every type incoming request. As a result, no 
response is created and problems arise. The PIO design has the necessary backend 
functions to respond correctly to any incoming request. It is the responsibility of the 
application to generate the correct response. These packet types are presented to the 
application:

• Requests targeting the Expansion ROM (if enabled)

• Message TLPs

• Memory or I/O requests targeting a BAR

• All completion packets

The PIO design, can be used to rule out any of these types of concerns, as the PIO design 
responds to all incoming transactions to the user application in some way to ensure the 
host receives the proper response allowing the system to progress. If the PIO design works, 
but the custom application does not, this means that some transaction is not being handled 
properly. 

The ChipScope analyzer should be implemented on the wrapper TRN Receive interface to 
identify if requests targeting the backend application are drained and completed 
successfully. The TRN interface signals that should be probed in the ChipScope analyzer 
are defined in Table D-4, page 182.

Using a Link Analyzer to Debug Device Recognition Issues

In cases where the link is up (trn_lnk_up_n = 0), but the device is not recognized by the 
system, a link analyzer can help solve the problem. It is likely the FPGA is not responding 
properly to some type of access. Use the link view to analyzer the traffic and see if anything 
looks out of place. 

To focus on the problem, it might be necessary to try different triggers. Here are some 
trigger examples:

• Trigger on the first INIT_FC1 and/or UPDATE_FC in either direction. This allows the 
analyzer to begin capture after link up. 

• The first TLP normally transmitted to an endpoint is the Set Slot Power Limit 
Message. This usually occurs before Configuration traffic begins. This might be a 
good trigger point.

• Trigger on Configuration TLPs.

• Trigger on Memory Read or Memory Write TLPs.
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Data Transfer Failing Debug
X-Ref Target - Figure D-6

Figure D-6: Data Transfer Debug Flow Diagram

Is the system freezing or hanging?

Is trn_lnk_up_n toggling?

No

Yes

Yes

Fatal Error? Blue screen?
Other errors?

No

No

No

The most often cause of a system
freeze or hang is due to a
completion timeout occurring 
on the host. This happens, when
the host issues a non-posted
transaction (usually a memory
read) to the Endpoint and the 
Endpoint's user application does
not properly respond.

If trn_lnk_up_n is toggling, it usually
means the physical link is marginal. 
In these cases, the link may be 
established but may then fail once
traffic begins to flow. Use ChipScope
Pro or probe trn_lnk_up_n to a logic
analyzer and determine if it is toggling.

Link could be marginal and packets
are failing to pass LCRC check.

If read or write transactions do not
appear on the trn interface, it means
that most likely the incoming packet
did not hit a BAR. Verify incoming 

TLP addresses against BAR
allocation.

A memory write that misses a BAR 
results in a Non-Fatal error message.

A non-posted transaction that misses a
BAR results in a Completion with

UR status.

No

If completion packets fail to reach their
destination, ensure the packet

contained the correct requester ID as
captured from the original 

Non-Posted TLP.

If other packets fail, ensure the address
targeted is valid. 

Ensure that completions are returned
for all incoming Non-Posted traffic.

Link is Up (trn_lnk_up_n = 0)
Device is recognized by system.

Data Transfers failing.

Do incoming packets appear
on TRN receive interface?

Yes
Errors flagged by the core are due

to problems on the receive data path.
Use a link analyzer if possible to 
check incoming packets. See the 

"Identifying Errors" section.

Errors are reported to the user
interface on the output cfg_dstatus[3:0].
This is a copy of the device status
register. Using ChipScope monitor
this bus for errors.

Is the problem with receiving
or transmitting TLPs?

Do outgoing packets arrive
at destination?

Receive Transmit
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Identifying Errors
Hardware symptoms of system lock up issues are indicated when the system hangs or a 
blue screen appears (PC systems). The PCI Express Base Specification v2.0 requires that error 
detection be implemented at the receiver. A system lock up or hang is commonly the result 
of a Fatal Error and is reported in bit 2 of the receivers Device Status register. Using the 
ChipScope tool, monitor the core’s device status register to see if a fatal error is being 
reported.

A fatal error reported at the Root complex implies an issue on the transmit side of the EP. 
The Root Complex Device Status register can often times be seen using PCITree (Windows) 
or LSPCI (Linux). If a fatal error is detected, refer to the Transmit section. A Root Complex 
can often implement Advanced Error Reporting (AER) which further distinguishes the 
type of error reported. AER provides valuable information as to why a certain error was 
flagged and is provided as an extended capability within a devices configuration space. 
Section 7.10 of the PCI Express Base Specification v2.0 provides more information on AER 
registers.

Transmit

Fatal Error Detected on Root or Link Partner

Check to make sure the TLP is correctly formed and that the payload (if one is attached) 
matches what is stated in the header length field. The Endpoints device status register does 
not report errors created by traffic on the transmit channel. 

The signals shown in Table D-4 should be monitored on the Transmit interface to verify all 
traffic being initiated is correct.

Table D-4: TRN Transmit Interface Signals

Name Direction Description

trn_lnk_up_n Output Transaction Link Up: Active Low. Transaction link-up is 
asserted when the core and the connected upstream link 
partner port are ready and able to exchange data packets. 
Transaction link-up is deasserted when the core and link 
partner are attempting to establish communication, and 
when communication with the link partner is lost due to 
errors on the transmission channel. When the core is driven 
to Hot Reset and Link Disable states by the link partner, 
trn_lnk_up_n is deasserted and all TLP’s stored in the 
endpoint core are lost.

trn_tsof_n Input Transmit Start-of-Frame (SOF): Active Low. Signals the start 
of a packet. Valid only along with assertion of 
trn_tsrc_rdy_n. 

trn_teof_n Input Transmit End-of-Frame (EOF): Active Low. Signals the end 
of a packet. Valid only along with assertion of 
trn_tsrc_rdy_n.

trn_td[63:0] Input Transmit Data: Packet data to be transmitted.

trn_trem_n Input Transmit Data Remainder: Valid only if trn_teof_n, 
trn_tsrc_rdy_n, and trn_tdst_rdy_n are all asserted. Legal 
values are: 

• 0 = packet data on all of trn_td[63:0]
• 1 = packet data only on trn_td[63:32]
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Fatal Error Not Detected

Ensure that the address provided in the TLP header is valid. The kernel mode driver 
attached to the device is responsible for obtaining the system resources allocated to the 
device. In a Bus Mastering design, the driver is also responsible for providing the 
application with a valid address range. System hangs or blue screens might occur if a TLP 
contains an address which does not target the designated address range for that device. 

Receive

Xilinx solutions for PCI Express provide the Device Status register to the application on 
CFG_DSTATUS[3:0]. Debug ports are available to help users determine the exact cause of 
errors on the Endpoint's receiver. See Debug Ports, page 173 for information on these ports.

System lock up conditions due to issues on the receive channel of the PCI Express core are 
often result of an error message being sent upstream to the root. Error messages are only 
sent when error reporting is enabled in the Device Control register.

A fatal condition is reported if any of these occur:

• Training Error

• DLL Protocol Error

• Flow Control Protocol Error

• Malformed TLP

• Receiver Overflow

The first four bullets are not common in hardware because both Xilinx PCI Express 
solutions and connected components have been thoroughly tested in simulation and 
hardware. However, a receiver overflow is a possibility. Users must ensure they follow 
requirements discussed in Receiver Flow Control Credits Available in Chapter 6 when 
issuing memory reads.

Debug ports are available to help users determine the exact cause of errors on the 
endpoint's receiver. See Debug Ports, page 173 for information on these ports.

trn_tsrc_rdy_n Input Transmit Source Ready: Active Low. Indicates that the User 
Application is presenting valid data on trn_td[63:0].

trn_tdst_rdy_n Output Transmit Destination Ready: Active Low. Indicates that the 
core is ready to accept data on trn_td[63:0]. The 
simultaneous assertion of trn_tsrc_rdy_n and 
trn_tdst_rdy_n marks the successful transfer of one data 
beat on trn_td[63:0]. 

Table D-4: TRN Transmit Interface Signals (Cont’d)

Name Direction Description

Table D-5: Description of CFG_DSTATUS[3:0]

CFG_DSTATUS[3:0] Description

CFG_DSTATUS[0] Correctable Error Detected

CFG_DSTATUS[1] Non-Fatal Error Detected

CFG_DSTATUS[2] Fatal Error Detected

CFG_DSTATUS[3] UR Detected
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Non-Fatal Errors
This section lists conditions that are reported as Non-Fatal errors. See the PCI Express Base 
Specification for more details. 

If the error is being reported by the root, the Advanced Error Reporting (AER) registers can 
be read to determine the condition that led to the error. Use a tool such as HWDIRECT, 
discussed in Third-Party Software Tools, page 170, to read the root's AER registers. 
Chapter 7 of the PCI Express Base Specification defines the AER registers. If the error is 
signaled by the endpoint, debug ports are available to help determine the specific cause of 
the error. 

Correctable Non-Fatal errors are:

• Receiver Error

• Bad TLP

• Bad DLLP

• Replay Timeout

• Replay NUM Rollover

The first three errors listed above are detected by the receiver and are not common in 
hardware systems. The replay error conditions are signaled by the transmitter. If an ACK is 
not received for a packet within the allowed time, it is replayed by the transmitter. 
Throughput can be reduced if many packets are being replayed, and the source can usually 
be determined by examining the link analyzer or ChipScope tool captures. 

Uncorrectable Non-Fatal errors are:

• Poisoned TLP

• Received ECRC Check Failed

• Unsupported Request (UR)

• Completion Timeout 

• Completer Abort

• Unexpected Completion

• ACS Violation

An unsupported request usually indicates that the address in the TLP did not fall within 
the address space allocated to the BAR. This often points to a problem with the address 
translation performed by the driver. Ensure also that the BAR has been assigned correctly 
by the root at start-up. LSPCI or PCItree discussed in Third-Party Software Tools, page 170 
can be used to read the BAR values for each device.

A completion timeout indicates that no completion was returned for a transmitted TLP 
and is reported by the requester. This can cause the system to hang (could include a blue 
screen on Windows) and is usually caused when one of the devices locks up and stops 
responding to incoming TLPs. If the root is reporting the completion timeout, the 
ChipScope analyzer can be used to investigate why the User Application did not respond 
to a TLP (for example, the User Application is busy, there are no transmit buffers available, 
or trn_tdst_rdy_n is deasserted). If the endpoint is reporting the Completion timeout, 
a link analyzer would show the traffic patterns during the time of failure and would be 
useful in determining the root cause.
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Next Steps
If the debug suggestions listed above do not resolve the issue, open a support case to have 
the appropriate Xilinx expert assist with the issue.  

To create a technical support case in Webcase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach ChipScope analyzer VCD captures taken in the steps above.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Simulation Debug
This section provides simulation debug flow diagrams for some of the most common 
issues experienced by users. Endpoints that are shaded gray indicate that more 
information can be found in sections below the figure.

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
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ModelSim Debug
X-Ref Target - Figure D-7

Figure D-7: ModelSim Debug FLow Diagram

ModelSim 
Simulation Debug

Does simulating the PIO Example 
Design give the expected output?

Do you get errors referring to
failing to access library?

No

No

No

Yes

Do you get errors indicating
"PCIE_2_0" or other elements like

"BUFG" not defined?

Are you able to receive packets
on the TRN RX interface and transmit

packets on the TRN TX interface?

No

No

The PIO Example design should
allow the user to quickly determine
if the simulator is set up correctly.
The default test will achieve link up
(trn_lnk_up_n = 0) and issue a 
Configuration Read to the core's
Device and VendorID.

SecureIP models are used to
simulate the integrated block 
for PCI Express and the MGTs.
To use these models, a Verilog
LRM-IEEE 1364-2005 encryption-
compliant simulator is required. 

A Verilog license is required to 
simulate with the SecureIP models. 
If the user design uses VHDL, a 
mixed-mode simulation license is 
required.

Yes

Need to compile and map the 
proper libraries. See "Compiling
Simulation Libraries Section." 

Yes

Yes

Add the "-L" switch with the appropriate 
library reference to the  vsim command

line. For example: -L secureip or
-L unisims_ver.

See "PIO Simulator Expected
Output" section.

If the libraries are not compiled and
mapped correctly, it will cause errors 
such as:
# ** Error: (vopt-19) Failed to access
   library 'secureip' at "secureip".

# No such file or directory. 
  (errno = ENOENT)

# ** Error: ../../example_design/
   xilinx_pcie_2_0_ep_v6.v(820):
   Library secureip not found.

To model the Integrated block for
PCI Express and the MGTs, the 
SecureIP models are used. These
models must be referenced during
the vsim call. Also, it is necessary to 
reference the unisims library and
possibly xilinxcorelib depending
on the design.

No

In the DSPORT test bench application,
issue a Configuration Write to the PCI
Command register at DWORD address
offset 0x04 and set bits [2:0] to 111b.

One of the most common mistakes in
simulation of an Endpoint is forgetting
to set the Memory, IO, and Bus Master
Enable bits to a 1 in the PCI Command
register in the configuration space.

Yes
If problem is more design specific, open

a case with Xilinx Technical Support
and include a wlf file dump of the simulation.
For the best results, dump the entire design

hierarchy.

Are you using ModelSim version 6.4a
or later?

Update ModelSim to 
version 6.4a or later.

If using VHDL, do you have a 
mixed-mode simulation license?

Obtain a mixed-mode 
simulation license.

Yes
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PIO Simulator Expected Output

The PIO design simulation should give the output as follows:

# Loading work.board(fast)
# Loading unisims_ver.IBUFDS_GTXE1(fast)
# Loading work.pcie_clocking_v6(fast)
# Loading unisims_ver.PCIE_2_0(fast)
# Loading work.pcie_gtx_v6(fast)
# Loading unisims_ver.GTXE1(fast)
# Loading unisims_ver.RAMB36(fast)
# Loading unisims_ver.RAMB16_S36_S36(fast)
# Loading unisims_ver.PCIE_2_0(fast__1)
# Loading work.glbl(fast)
# [                   0] board.EP.core.pcie_2_0_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
# [                   0] board.EP.core.pcie_2_0_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
# [                   0] board.EP.core.pcie_2_0_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [                  0] board.EP.core.pcie_2_0_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [                   0] board.RP.rport.pcie_2_0_i.pcie_bram_i ROWS_TX 1 COLS_TX 2
# [                   0] board.RP.rport.pcie_2_0_i.pcie_bram_i ROWS_RX 1 COLS_RX 2
# [              0] board.RP.rport.pcie_2_0_i.pcie_bram_i.pcie_brams_tx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# [               0] board.RP.rport.pcie_2_0_i.pcie_bram_i.pcie_brams_rx NUM_BRAMS 2  
DOB_REG 1 WIDTH 36 RAM_WRITE_LATENCY 0 RAM_RADDR_LATENCY 0 RAM_RDATA_LATENCY 2
# Running test {sample_smoke_test0}......
# [                   0] : System Reset Asserted...
# [             4995000] : System Reset De-asserted...
# [            64069100] : Transaction Reset Is De-asserted...
# [            73661100] : Transaction Link Is Up...
# [            73661100] : Expected Device/Vendor ID = 000710ee
# [            73661100] : Reading from PCI/PCI-Express Configuration Register 0x00
# [            73673000] : TSK_PARSE_FRAME on Transmit
# [            74941000] : TSK_PARSE_FRAME on Receive
# [            75273000] : TEST PASSED --- Device/Vendor ID 000710ee successfully received
# ** Note: $finish    : ../tests/sample_tests1.v(29)
#    Time: 75273 ns  Iteration: 3  Instance: /board/RP/tx_usrapp

Compiling Simulation Libraries

Use the compxlib command to compile simulation libraries. This tool is delivered as part of 
the Xilinx software. For more information see the ISE Software Manuals and specifically 
the Development System Reference Guide under the section titled compxlib.

Assuming the Xilinx and ModelSim environments are set up correctly, this is an example of 
compiling the SecureIP and UniSims libraries for Verilog into the current directory

compxlib -s mti_se -arch spartan6 -l verilog -lib secureip -lib unisims 
-dir ./

There are many other options available for compxlib described in the Development System 
Reference Guide.

Compxlib produces a modelsim.ini file containing the library mappings. In ModelSim, 
to see the current library mappings type vmap at the prompt. The mappings can be 
updated in the INI file or to map a library at the ModelSim prompt type:

vmap [<logical_name>] [<path>]

For example:
Vmap unisims_ver C:\my_unisim_lib
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Next Step
If the debug suggestions listed above do not resolve the issue, a support case should be 
opened to have the appropriate Xilinx expert assist with the issue.  

To create a technical support case in Webcase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

• Detailed description of the issue and results of the steps listed above.

• Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
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Managing Receive-Buffer Space for 
Inbound Completions

The PCI Express Base Specification requires all Endpoints to advertise infinite Flow 
Control credits for received Completions to their link partners. This means that an 
Endpoint must only transmit Non-Posted Requests for which it has space to accept 
Completion responses. This appendix describes how a User Application can manage the 
receive-buffer space in the PCI Express Endpoint core to fulfill this requirement.

General Considerations and Concepts

Completion Space
Table E-1 defines the completion space reserved in the receive buffer by the core. The 
values differ for different versions of the core, and also differ based on whether the 
designer chooses to have TLP Digests (ECRC) removed from the incoming packet stream. 
Values are credits, expressed in decimal.

Table E-1: Receiver-Buffer Completion Space

Capability Max Payload 
Size (bytes)

Performance Level : Good Performance Level : High

Cpl. Hdr.
(Total_CplH)

Cpl. Data 
(Total_CplD)

Cpl. Hdr.
(Total_CplH)

Cpl. Data
(Total_CplD)

128 8 64 16 128

256 16 128 32 256

512 32 256 32 256

http://www.xilinx.com


190 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG654 (v3.0) April 19, 2010

Appendix E: Managing Receive-Buffer Space for Inbound Completions

Maximum Request Size
A Memory Read cannot request more than the value stated in Max_Request_Size, which is 
given by Configuration bits cfg_dcommand[14:12] as defined in Table E-2. If the User 
Application chooses not to read the Max_Request_Size value, it must use the default value 
of 128 bytes.

Read Completion Boundary
A Memory Read can be answered with multiple Completions, which when put together 
return all requested data. To make room for packet-header overhead, the User Application 
must allocate enough space for the maximum number of Completions that might be 
returned.

To make this process easier, the Base Specification quantizes the length of all Completion 
packets such that each must start and end on a naturally aligned Read Completion 
Boundary (RCB), unless it services the starting or ending address of the original request. 
The value of RCB is determined by Configuration bit cfg_lcommand[3] as defined in 
Table E-3. If the User Application chooses not to read the RCB value, it must use the default 
value of 64 bytes.

When calculating the number of Completion credits a Non-Posted Request requires, the 
user must determine how many RCB-bounded blocks the Completion response might 
require; this is the same as the number of Completion Header credits required. 

Table E-2: Max Request Size Settings

cfg_dcommand[14:12]
Max_Request_Size

Bytes DW QW Credits

000b 128 32 16 8

001b 256 64 32 16

010b 512 128 64 32

011b 1024 256 128 64

100b 2048 512 256 128

101b 4096 1024 512 256

110b–111b Reserved

Table E-3: Read Completion Boundary Settings

cfg_lcommand[3]
Read Completion Boundary

Bytes DW QW Credits

0 64 16 8 4

1 128 32 16 8
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Methods of Managing Completion Space
A User Application can choose one of four methods to manage receive-buffer Completion 
space, as listed in Table E-4. For convenience, this discussion refers to these methods as 
LIMIT_FC, PACKET_FC, RCB_FC, and DATA_FC. Each has advantages and 
disadvantages that the designer needs to consider when developing the user application.

The LIMIT_FC Method
The LIMIT_FC method is the simplest to implement. The User Application assesses the 
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To 
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:

Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized Completions supported by the 
CplD credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

3. Determine the greatest number of maximum-sized Completions supported by the 
CplH credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number 
of outstanding Non-Posted requests: 

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the User Application can load a register NP_PENDING with 
zero at reset and make sure it always stays with the range 0 to MAX_NP. When a Non-
Posted Request is transmitted, NP_PENDING decrements by one. When all Completions 
for an outstanding NP Request are received, NP_PENDING increments by one.

Table E-4: Managing Receive Completion Space Methods

Method Description Advantage Disadvantage

LIMIT_FC Limit the total number of 
outstanding NP Requests

Simplest method to 
implement in user 
logic

Much Completion 
capacity goes 
unused

PACKET_FC Track the number of 
outstanding CplH and CplD 
credits; allocate and 
deallocate on a per-packet 
basis

Relatively simple 
user logic; finer 
allocation 
granularity means 
less wasted capacity 
than LIMIT_FC

As with LIMIT_FC, 
credits for an NP are 
still tied up until the 
Request is 
completely satisfied

RCB_FC Track the number of 
outstanding CplH and CplD 
credits; allocate and 
deallocate on a per-RCB basis

Ties up credits for 
less time than 
PACKET_FC

More complex user 
logic than LIMIT_FC 
or PACKET_FC

DATA_FC Track the number of 
outstanding CplH and CplD 
credits; allocate and 
deallocate on a per-RCB basis

Lowest amount of 
wasted capacity

Most complex user 
logic
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Although this method is the simplest to implement, it potentially wastes the most receiver 
space because an entire Max_Request_Size block of Completion credit is allocated for each 
Non-Posted Request, regardless of actual request size. The amount of waste becomes 
greater when the User Application issues a larger proportion of short Memory Reads (on 
the order of a single DWORD), I/O Reads and I/O Writes.

The PACKET_FC Method
The PACKET_FC method allocates blocks of credit in finer granularities than LIMIT_FC, 
using the receive Completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at 
reset), and then perform these steps:

1. When the User Application needs to send an NP request determine the potential 
number of CplH and CplD credits, it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data)

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are 
rounded up. For example, if a Memory Read requests 8 bytes of data from address 
7Ch, the returned data can potentially be returned over two Completion packets (7Ch-
7Fh, followed by 80h-83h). This would require two RCB blocks and two data credits.

2. Check the following:

CPLH_PENDING + NP_CplH < Total_CplH (from Table E-1)

CPLD_PENDING + NP_CplD < Total_CplD (from Table E-1)

3. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each NP 
Request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all Completion data is returned for an NP Request, decrement 
CPLH_PENDING and CPLD_PENDING accordingly.

This method is less wasteful than LIMIT_FC but still ties up all of an NP Request’s 
Completion space until the entire request is satisfied. RCB_FC and DATA_FC provide finer 
de-allocation granularity at the expense of more logic.

The RCB_FC Method
The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit 
is freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING 
(loaded with zero at reset).

1. Calculate the number of data credits per RCB:

CplD_PER_RCB = RCB / 16 bytes

2. When the User Application needs to send an NP request, determine the potential 
number of CplH credits it might require. Use this to allocate CplD credits with RCB 
granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = NP_CplH × CplD_PER_RCB

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 193
UG654 (v3.0) April 19, 2010

Methods of Managing Completion Space

3. Check the following:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

4. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

5. At the start of each incoming Completion, or when that Completion begins at or 
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1 and 
CPLD_PENDING by CplD_PER_RCB. Any Completion can cross more than one RCB. 
The number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header. 
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives us an RCB granularity. If a 
User Application transmits I/O requests, the User Application could adopt a policy of only 
allocating one CplD credit for each I/O Read and zero CplD credits for each I/O Write. The 
User Application would have to match each incoming Completion’s Tag with the Type 
(Memory Write, I/O Read, I/O Write) of the original NP Request.

The DATA_FC Method
The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, CPLH_PENDING and 
CPLD_PENDING (loaded with zero at reset).

1. When the User Application needs to send an NP request, determine the potential 
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes] 
(except I/O Write, which returns zero data)

2. Check the following:

CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CplD < Total_CplD

3. If both inequalities are true, transmit the Non-Posted Request, increase 
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD.

4. At the start of each incoming Completion, or when that Completion begins at or 
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1. The 
number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header. 
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over.

http://www.xilinx.com
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5. At the start of each incoming Completion, or when that Completion begins at or 
crosses at a naturally aligned credit boundary, decrement CPLD_PENDING by 1. The 
number of credit-boundary crossings is given by: 

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the 
start of each incoming Completion, increment per DW or QW as appropriate, then 
count an RCB whenever CUR_ADDR rolls over each 16-byte address boundary.

This method is the least wasteful but requires the greatest amount of user logic. If even 
finer granularity is desired, the user can scale the Total_CplD value by 2 or 4 to get the 
number of Completion QWORDs or DWORDs, respectively, and adjust the data 
calculations accordingly.
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Appendix F

Board Design Guidelines

Overview
This appendix discusses topics related to implementing a PCI Express® design that uses 
the Spartan®-6 FPGA on a printed circuit board (PCB). Optimal performance requires an 
understanding of the functionality of the device pins and needs to address issues such as 
device interfacing, protocol specifications, and signal integrity. 

Recommendations made in this chapter are guidelines and do not guarantee a working 
design.

The information presented here discusses PCB considerations specific to the PCI Express 
specifications. This chapter should be used in conjuction with these documents for a 
comprehensive understanding of PCB design with Xilinx FPGAs.

• UG386, Spartan-6 FPGA GTP Transceivers User Guide - Specifically, see the “Board 
Design Guidelines” chapter.

• UG393, Spartan-6 FPGA PCB Design Guide. 

The PCI-SIG maintains multiple specifications that can apply depending on the form factor 
of the design. This document only considers the subset of these specifications focused on 
chip-to-chip and add-in card implementations. Table F-1 shows the specifications that 
correlate to the applicable form factors.

Example PCB Reference 
Xilinx delivers the SP605 board with an x1 PCI Express add-in card connection.  This 
chapter uses this board as an example for certain recommendations.

For documentation such as schematics, gerbers, and a bill-of-material for the SP605 board, 
see the Spartan-6 FPGA SP605 Evaluation Kit product page: 

www.xilinx.com /sp605

Table F-1: PCI-SIG Specifications and Form Factor

Specification Name Form-factor

PCI Express Base Specification Revision 1.1 Chip-to-chip on a single PCB

PCI Express Card Electromechanical 
Specification (CEM) Revision 1.1

ATX: desktop/server consisting of System 
card and Add-in card

http://www.xilinx.com/support/documentation/user_guides/ug386.pdf
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf
http://www.xilinx.com/sp605
http://www.xilinx.com
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Board Stackup
Board stackup design is dependent on many variables, including design, manufacturing, 
and cost constraints. See the information onboard stackup design in UG393 and UG386.   

Generally speaking, signal layers for high-speed signals such as PCI Express data signals 
should be sandwiched between ground planes. It is also preferable to use the layers closest 
to the top or bottom of the device so that via stubs are minimized.

SP605 Example
Figure F-1 shows the stackup that the SP605 Add-in Card reference board employs. All 
internal signal layers are sandwiched between (uninterrupted) ground and power planes.

Transmit (TX) data lines initiate from the FPGA on the top layer, immediately drop to SIG3 
(Layer 10) for routing across the PCB, and then terminate at the PCI Express edge 
connector side A on the bottom layer. 

X-Ref Target - Figure F-1

Figure F-1: SP605 Board Stackup
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Receive (RX) data lines initiate from the FPGA on the top layer, immediately drop to SIG3 
(Layer 10) for routing across the PCB, and then terminate at the PCI Express edge 
connector side B on the top layer.

Power Supply Design 
UG393 discusses general Power Distribution System (PDS) design for the FPGA, including 
the required decoupling capacitors for the VCCINT, VCCO, and VCCAUX supplies. 

It is also imperative to ensure a clean power supply on MGTAVCC and MGTAVTT power 
supplies. Consult UG386 for more details on GTP transceiver power supply layout and 
other requirements for filtering and design.

Data Routing Guidelines

Breakout from FPGA BGA
UG386 discusses how to break out the high-speed GTP transceiver signals from the BGA 
and provides examples of such. Design constraints might require microstrips for the BGA 
exit path or from via to the PCI Express edge connector launch or SMT pads. In such cases, 
the microstrip trace must be kept as short as possible.

X-Ref Target - Figure F-2

Figure F-2: Transmit and Receive Data Lines
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An example Receive and Transmit breakout pattern from the SP605 board are shown in 
Figure F-3. Transmit lines are shown in green, and receive lines are shown in red. 

Microstrip vs. Stripline
Striplines are to be used whenever possible, as are the uppermost and lowermost stripline 
layers to minimize via stubs. When the stackup is being planned, these layers should be 
placed as close to the top and bottom layers whenever possible. 

Plane Reference and Splits
Ground planes should be used as reference planes for signals, as opposed to noisier power 
planes. Each reference plane should be contiguous for the length of the trace, because 
routing over plane-splits creates an impedance discontinuity. In this case, the impedance of 
the trace changes because its coupling to the reference plane is changed abruptly at the 
plane split.

Bends
Follow the recommendations in UG393 regarding microstrip and stripline bends. Tight 
bends (such as 90 degrees) should be avoided; only mitered, 45-degree or less, bends are 
recommended. 

X-Ref Target - Figure F-3

Figure F-3: Receive Breakout Pattern
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Propagation Delay
PCI Express generally does not specify a maximum propagation delay for data signals, 
with the exception of add-in cards. Add-in card designs should meet the propagation 
delay specification in the CEM specification for data traces. The delay from the edge finger 
to the GTP transceiver must not exceed 750 ps. 

Intrapair Skew
Intrapair skew refers to the skew between a P and N leg of a differential pair. Skew can 
introduce common-mode effects which lead to increased EMI, crosstalk and other DC 
effects. It is important to match the skew for differential pairs as close as possible.

Xilinx recommends intrapair trace length-matching to within 5 mils to minimize these 
effects.

Symmetrical Routing
Always use symmetrical routing. This prevents common-mode effects, such as EMI, from 
being introduced into the system.

Figure F-4 illustrates two examples of non-symmetrical routing, which should be avoided.

Vias
Users should follow the recommendations in UG393 for differential vias. Specifically, 
wherever high-speed signals must transition signal layers, a Ground-Signal-Signal-
Ground (GSSG) type via should be used if possible. This provides a low inductance return 
current path.

All vias for a differential pair should employ symmetrical routing rules.

Trace Impedance
Differential data-line trace impedance was not specified in the Rev 1.0, 1.0a, or 1.1 (1.x) of 
the PCI Express Base and PCI Express CEM Specifications. The transmitters and receivers 
were specified to have 100Ω nominal differential impedance; therefore, most 1.x designs 
opt for a default 100Ω differential trace impedance for all PCI Express differential 
connections.

X-Ref Target - Figure F-4

Figure F-4: Non-Symmetrical Routing Examples

http://www.xilinx.com
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Xilinx recommends using simulation techniques to determine the optimum trace 
impedance. Simulation using HSPICE or Hyperlinx can help determine the optimum trace 
impedance to reduce signal loss.

PCB dielectric material, board stack up, microstrip, and strip line traces affect signal 
impedence. It is important that all of these factors are taken into consideration together.

If a simulator is not available, Xilinx recommends these basic guidelines for differential 
data-line trace impedance targets:

• 100Ω ±10% for 2.5 Gb/s only links

Trace Separation
Generally, simulation or post-layout analysis tools should be used to determine the 
optimum spacing required to reduce crosstalk from nearby aggressor signals. In the 
absence of these tools, Xilinx suggests that spacing between differential pairs and other 
non-PCI Express signals should be at least three times the dielectric height above the 
reference planes to minimize crosstalk. Exceptions to this are allowed in the break-out area 
of the FPGA; however, these sections should be kept as short as possible.

Lane Polarity Inversion
The PCI Express Base Specification (1.x) requires that all PCI Express receivers support 
polarity inversion. This gives the PCB designer flexibility to avoid having to cross P and N 
lines within a given differential pair. 

GTP receivers support lane polarity inversion on a per transceiver basis.

AC Coupling

System and Add-in Cards

AC coupling capacitors should be placed on the TX pairs. Place the capacitors either near 
the edge connector or the FPGA—not in the middle of the interconnect.

Chip-to-Chip

AC coupling capacitors can be placed anywhere on the interconnect, except in the very 
middle.

General Guidelines

Capacitors for coupled traces should always be located at the same relative place as its 
partner, that is, symmetrical routing guidelines apply for differential pairs.

Use 0.1 µF ceramic chip capacitors in the smallest package possible.

Data Signal Termination
No external resistor terminators are required with the exception of a precision 50Ω resistor 
connected to the RCAL circuitry for the GTP transceiver column. Make sure the trace 
length and geometry to both legs of the resistor are equal. See UG386 for more information.

http://www.xilinx.com
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Additional Considerations for Add-In Card Designs
1. Board thickness for add-in cards should not to exceed 0.062 inches.

2. Care must be taken when connecting the RX and TX data lines to the edge connector. 
The edge connector pin names for the TX and RX data lines as defined in the CEM 
specification are named from the view of the system board. That is, the RX (PERxx) 
lines are connected to the receiver on the system board and the transmitter on the 
add-in card. Similarly the TX (PETxx) lines are connected to the transmitter on the 
system board and the receiver on the add-in card. That means the add-in card should 
route the edge connector PERxx pins to the transmitter and the PETxx pins to the 
receiver on an Endpoint configured FPGA. Figure F-5 illustrates how to connect the 
data lines for an add-in card design.

Reference Clock Considerations

Jitter
Reference clock jitter has the potential to close both the TX and RX eyes, depending of the 
frequency content of the phase jitter. Therefore, it is very important to maintain as clean a 
reference clock as possible.

Reduce crosstalk on the REFCLK signal by isolating the clock signal from nearby high-
speed traces. Maintain a separation of at least 25 mils from the nearest aggressor signals.

Ensure a clean power supply on MGTAVCC power supply. See UG386 for more details on 
GTP transceiver power supply layout and design.

In some cases where the designer has no control over the clock source, it might be desirable 
to add a jitter attenuator device. 

If an external PLL or jitter attenuator device is used, ensure that it meets the specifications 
for PLL bandwidth as defined in the PCI Express Base Specification. The PLL bandwidth 
specification is different for 1.x and 2.0 versions of the specification.

X-Ref Target - Figure F-5

Figure F-5: Add-In Card Design Connections
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Trace Impedance
The reference clock should use a 100Ω differential trace impedance.

Termination
The REFCLK signal should be routed to the dedicated reference clock input pins on the 
GTP transceiver, and the user design should instantiate an IBUFDS primitive in the user 
design. An internal 100Ω differential termination biased to 2/3 MGTAVCC is automatically 
included on these input pins when the IBUFDS is used, and no external termination is 
required or needed for Spartan-6 devices. This is true for both HSCL and LVDS clocks. 

See UG386 for more information on GTP transceiver reference clock termination.

AC Coupling 
The REFCLK signal should be AC coupled at the input to the FPGA. Xilinx recommends 
0.1 µF ceramic-chip capacitors for this purpose. See UG386 for more information

Fanout
If the reference clock needs to be routed to more than one location, then a dedicated clock 
fanout device should be used. Make sure to follow the specifications for the fanout device. 
For instance, 100Ω termination might be required on the input to the fanout device.

Figure F-6 shows an example of a clock fanout device used to route the reference clock to 
multiple locations. The Spartan-6 FPGA requires no external resistive termination (just AC 
coupling capacitors). The fanout device is shown with a single resistor terminator at its 
clock input pins.

Sideband PCI Express Signals

PERST#

The PERST# signal must be routed to the FPGA for add-in cards. This 3.3V signal should 
be routed to an 3.3 V I/O bank (that is, VCCO connected to 3.3V). If a non-3.3V I/O bank is 
used, an external circuit is necessary to interface with the Spartan-6 FPGA inputs. This 
external circuit could consist of a level translator such as the ST Micro ST2378E, a resistor 
network, or other transistor-based circuit. There is no termination required for this signal, 
although the integrated Endpoint Block core implements a pull-up on the input from 
within the example UCF file.

X-Ref Target - Figure F-6

Figure F-6: Fanout Block Diagram
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PRSNT#

The PRSNT# pins should be connected as recommended in the CEM specification. Also see 
the SP605 board for an example

Summary Checklist
Table F-2 provides a checklist which summarizes the items discussed in this chapter.

Table F-2: Board Design Checklist

Item

Board Stackup

Follow guidelines in UG393 and UG386.

Power Supply Design

Follow guidelines in UG393 and UG386.

High-Speed Data Signal Routing

Use stripline routing when possible.

Avoid routing over reference plane splits or voids.

Bends < 45 degrees.

Add-in cards must not exceed 750 ps propagation delay.

Length match intrapair skew to within 3 ps.

Use Ground-Signal-Signal-Ground (GSSG) type vias when possible.

Limit the number of vias.

100Ω differential trace impedance for 2.5 Gb/s data signals.

20 mil trace separation between differential pairs (exception in breakout area).

AC coupling 0.1 µF ceramic chip capacitors on all TX lines.

50Ω precision resistor connected to the RCAL circuit for GTP transceivers (see UG386).

Add-in cards must not exceed 0.062 inches in thickness.

Reference Clock (REFCLK)

100Ω differential trace impedance.

Maintain separation of at least 25 mils from nearby aggressor signals.

Ensure clean power supply on MGTAVCC.

No external termination required at input to FPGA (however, user must instantiate 
IBUFDS primitive).

AC coupling 0.1 µF ceramic chip capacitors.

Sideband Signals for Add-In Cards

PERST# routes directly to 3.3V I/O bank. Use external circuitry if routing to non-3.3V 
I/O bank.

PRSNT# connects as recommended in CEM specification.

http://www.xilinx.com
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PCIE_A1 Port Descriptions

This appendix describes the physical interfaces visible on the Spartan®-6 FPGA integrated 
Endpoint block’s software primitive, PCIE_A1. 

This appendix contains these sections:

• Clock and Reset Interface

• Transaction Layer Interface

• Block RAM Interface

• GTP Transceiver Interface

• Configuration Management Interface

• Debug Interface Ports

Clock and Reset Interface
Table G-1 defines the ports in the Clock and Reset interface.

Table G-1: Clock and Reset Interface Port Descriptions

Port Direction Clock Domain Description

CLOCKLOCKED Input USERCLK LOCKED signal from the PLL.

MGTCLK Input MGTCLK PIPE interface clock.

RECEIVEDHOTRST Output MGTCLK Received hot reset. When asserted, this output indicates 
when an in-band hot reset has been received.

SYSRESETN Input NONE Asynchronous system reset (active Low). When this input 
is asserted, the integrated Endpoint block is held in reset 
until PLL LOCK; thus it can be used to reset the integrated 
Endpoint block.

USERCLK Input USERCLK User interface clock.

USERRSTN Output USERCLK User interface reset (active Low). This output should be 
used to reset the user design logic (it is asserted when the 
integrated Endpoint block is reset).

http://www.xilinx.com
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Transaction Layer Interface
Packets are presented to and received from the integrated Endpoint block’s Transaction 
Layer through the Transaction Layer interface. Table G-2 defines the ports in the 
Transaction Layer interface.

Table G-2: Transaction Layer Interface Port Descriptions

Port Direction Clock Domain Description

TRNFCCPLD[11:0] Output USERCLK Completion Data Flow Control Credits. This output contains the 
number of Completion Data FC credits for the selected flow 
control type.

TRNFCCPLH[7:0] Output USERCLK Completion Header Flow Control Credits. This output contains 
the number of Completion Header FC credits for the selected 
flow control type.

TRNFCNPD[11:0] Output USERCLK Non-Posted Data Flow Control Credits. This output contains the 
number of Non-Posted Data FC credits for the selected flow 
control type.

TRNFCNPH[7:0] Output USERCLK Non-Posted Header Flow Control Credits. This output contains 
the number of Non-Posted Header FC credits for the selected 
flow control type.

TRNFCPD[11:0] Output USERCLK Posted Data Flow Control Credits. This output contains the 
number of Posted Data FC credits for the selected flow control 
type.

TRNFCPH[7:0] Output USERCLK Posted Header Flow Control Credits. This output contains the 
number of Posted Header FC credits for the selected flow control 
type.

TRNFCSEL[2:0] Input USERCLK Flow Control Informational Select. This input selects the type of 
flow control information presented on the TRNFC* signals. Valid 
values are: 

000b: Receive buffer available space 

001b: Receive credits granted to the link partner 

010b: Receive credits consumed 

100b: Transmit user credits available 

101b: Transmit credit limit 

110b: Transmit credits consumed

TRNLNKUPN Output USERCLK Transaction Link Up (active Low). This output is asserted when 
the core and the connected upstream link partner port are ready 
and able to exchange data packets. It is deasserted when the core 
and link partner are attempting to establish communication, and 
when communication with the link partner is lost due to errors 
on the transmission channel. When the core is driven to the Hot 
Reset and Link Disable states by the link partner, TRNLNKUPN 
is deasserted and all TLPs stored in the core are lost.
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TRNRBARHITN[6:0] Output USERCLK Receive BAR Hit (active Low). This output indicates the BAR(s) 
targeted by the current receive transaction:

TRNRBARHITN[0]: BAR0 

TRNRBARHITN[1]: BAR1 

TRNRBARHITN[2]: BAR2 

TRNRBARHITN[3]: BAR3 

TRNRBARHITN[4]: BAR4 

TRNRBARHITN[5]: BAR5 

TRNRBARHITN[6]: Expansion ROM Address 

If two BARs are configured into a single 64-bit address, both 
corresponding TRNRBARHITN bits are asserted.

TRNRD[31:0] Output USERCLK Receive Data. This bus contains the packet data being received.

TRNRDSTRDYN Input USERCLK Receive Destination Ready (active Low). This input is asserted to 
indicate that the user application is ready to accept data on 
TRNRD. Simultaneous assertion of TRNRSRCRDYN and 
TRNRDSTRDYN marks the successful transfer of data on 
TRNRD.

TRNREOFN Output USERCLK Receive End-of-Frame (active Low). When asserted, this output 
indicates the end of a packet.

TRNRERRFWDN Output USERCLK Receive Error Forward (active Low). This output marks the 
current packet in progress as error-poisoned. It is asserted by the 
integrated Endpoint block for the entire length of the packet.

TRNRNPOKN Input USERCLK Receive Non-Posted OK (active Low). The user application 
asserts this input whenever it is ready to accept a Non-Posted 
Request packet. This allows Posted and Completion packets to 
bypass Non-Posted packets in the inbound queue if necessitated 
by the user application. When the user application approaches a 
state where it is unable to service Non-Posted Requests, it must 
deassert TRNRNPOKN one clock cycle before the integrated 
Endpoint block presents TRNREOFN of the last Non-Posted TLP 
the user application can accept.

TRNRSOFN Output USERCLK Receive Start-of-Frame (active Low). When asserted, this output 
indicates the start of a packet.

TRNRSRCDSCN Output USERCLK Receive Source Discontinue (active Low). When asserted, this 
output indicates that the integrated Endpoint block is aborting 
the current packet transfer. It is asserted when the physical link 
is going into reset.

TRNRSRCRDYN Output USERCLK Receive Source Ready (active Low). When asserted, this output 
indicates that the integrated Endpoint block is presenting valid 
data on TRNRD.

TRNTBUFAV[5:0] Output USERCLK Transmit Buffers Available. This output provides the number of 
transmit buffers available in the integrated Endpoint block. The 
maximum number is 32. Each transmit buffer can accommodate 
one TLP up to the supported Maximum Payload Size.

Table G-2: Transaction Layer Interface Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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TRNTCFGGNTN Input USERCLK Transmit Configuration Grant (active Low). The user application 
asserts this input in response to TRNTCFGREQN, to allow the 
integrated Endpoint block to transmit an internally generated 
TLP. If the user does not need to postpone internally generated 
TLPs, this signal can be continuously asserted.

TRNTCFGREQN Output USERCLK Transmit Configuration Request (active Low). This output is 
asserted when the integrated Endpoint block is ready to transmit 
a Configuration Completion or other internally generated TLP.

TRNTD[31:0] Input USERCLK Transmit Data. This bus contains the packet data to be 
transmitted.

TRNTDSTRDYN Output USERCLK Transmit Destination Ready (active Low). When asserted, this 
output indicates that the integrated Endpoint block is ready to 
accept data on TRNTD. Simultaneous assertion of 
TRNTSRCRDYN and TRNTDSTRDYN marks a successful 
transfer of data on TRNTD.

TRNTEOFN Input USERCLK Transmit End-of-Frame (active Low). This input signals the end 
of a packet.

TRNTERRDROPN Output USERCLK Transmit Error Drop (active Low). When asserted, this output 
indicates that the integrated Endpoint block discarded a packet 
because of a length violation or, when streaming, data was not 
presented on consecutive clock cycles. Length violations only 
include packets longer than the supported maximum payload 
size and do not include packets whose payload does not match 
the payload advertised in the TLP header length field.

TRNTERRFWDN Input USERCLK Transmit Error Forward (active Low). This input marks the 
current packet in progress as error-poisoned. If TRNTSTRN is 
deasserted, TRNTERRFWDN can be asserted any time between 
start of frame (SOF) and end of frame (EOF), inclusive. If 
TRNTSTRN is asserted, TRNTERRFWDN can only be asserted at 
SOF.

TRNTSOFN Input USERCLK Transmit Start-of-Frame (active Low). When asserted, this input 
indicates the start of a packet.

TRNTSRCRDYN Input USERCLK Transmit Source Ready (active Low). When asserted, this input 
indicates that the user application is presenting valid data on 
TRNTD.

TRNTSTRN Input USERCLK Transmit Streamed (active Low). When asserted, this input 
indicates a packet is presented on consecutive clock cycles and 
transmission on the link can begin before the entire packet has 
been written to the integrated Endpoint block.

Table G-2: Transaction Layer Interface Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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Block RAM Interface
The Transmit (TX) and Receive (RX) buffers are implemented with block RAM. Table G-3 
defines the TX buffer and RX buffer ports for the Block RAM interface.

GTP Transceiver Interface
Table G-4 defines the PIPE per Lane ports within the GTP Transceiver interface. There are 
two copies of the PIPE per Lane ports, one for each port (n = A or B). Depending on which 
GTP transceiver is used, the LogiCORE IP core for PCI Express selects the correct port to 
use for the design. 

Table G-3: Block RAM Interface Port Descriptions

Port Direction Clock Domain Description

MIMRXRADDR[11:0] Output USERCLK RX buffer read address

MIMRXRDATA[34:0] Input USERCLK RX buffer read data

MIMRXREN Output USERCLK RX buffer read enable

MIMRXWADDR[11:0] Output USERCLK RX buffer write address

MIMRXWDATA[34:0] Output USERCLK RX buffer write data

MIMRXWEN Output USERCLK RX buffer write enable 

MIMTXRADDR[11:0] Output USERCLK TX buffer read address

MIMTXRDATA[35:0] Input USERCLK TX buffer read data

MIMTXREN Output USERCLK TX buffer read enable

MIMTXWADDR[11:0] Output USERCLK TX buffer write address

MIMTXWDATA[35:0] Output USERCLK TX buffer write data

MIMTXWEN Output USERCLK TX buffer write enable

Table G-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface

Port Direction Clock Domain Description

PIPEGTRESETDONEn Input MGTCLK When asserted, this input indicates that the GTP 
transceiver has finished reset and is ready for use.

PIPEPHYSTATUSn Input MGTCLK PIPEPHYSTATUSn is asserted for a single cycle to 
indicate completion of GTP transceiver functions such 
as Power Management state transitions and receiver 
detection on lane n. 

PIPERXCHARISKn[1:0] Input MGTCLK This output defines the control bit(s) for received data:

0b: Data byte

1b: Control byte

The lower bit corresponds to the lower byte of 
PIPERXDATAn[7:0] while the upper bit describes of 
PIPERXDATAn[15:8].

PIPERXDATAn[15:0] Input MGTCLK This input contains the received data.

PIPERXENTERELECIDLEn Input MGTCLK This input indicates an electrical idle on the Receiver. 
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PIPERXPOLARITYn Output MGTCLK When High, this output instructs the GTP transceiver to 
invert polarity (on the RX differential pair).

PIPERXRESETn Output MGTCLK When asserted, this output resets the receive portion of 
the GTP transceiver.

PIPERXSTATUSn[2:0] Input MGTCLK This input encodes the receiver status and error codes 
for the received data stream and receiver detection on 
lane n:

000b: Data received OK

001b: Reserved

010b: Reserved

011b: Receiver Detected

100b: 8B/10B decode error

101b: Elastic Buffer overflow

110b: Elastic Buffer underflow

111b: Receive disparity error

PIPETXCHARDISPMODEn[1:0] Output MGTCLK PIPETXCHARDISPMODE and 
PIPETXCHARDISPVAL allow the 8B/10B disparity of 
outgoing data to be controlled when 8B/10B encoding 
is enabled.

PIPETXCHARDISPMODE[1] corresponds to 
TXDATA[15:8] and PIPETXCHARDISPMODE[0] 
corresponds to PIPETXDATA[7:0]. 

For PCI Express operation, PIPETXCHARDISPMODE 
maps to the PIPE signal TXCOMPLIANCE given that 
PIPETXCHARDISPVAL is Low. When 
PIPETXCHARDISPMODE is High and 
PIPETXCHARDISPVAL is Low, the running disparity 
is set to negative. This functionality is used when 
transmitting the compliance pattern.

PIPETXCHARDISPVALn[1:0] Output MGTCLK PIPETXCHARDISPMODE and 
PIPETXCHARDISPVAL allow the 8B/10B disparity of 
outgoing data to be controlled when 8B/10B encoding 
is enabled.

TXCHARDISPVAL[1] corresponds to TXDATA[15:8] 
and TXCHARDISPVAL[0] corresponds to 
TXDATA[7:0].

For PCI Express operation, PIPETXCHARDISPVAL 
should always be Low.

PIPETXCHARISKn[1:0] Output MGTCLK This output determines the control bit(s) for received 
data:

0b: Data byte

1b: Control byte

The lower bit corresponds to the lower byte of 
PIPETXDATAn[7:0] while the upper bit describes 
PIPETXDATAn[15:8].

Table G-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface (Cont’d)

Port Direction Clock Domain Description
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PIPETXDATAn[15:0] Output MGTCLK This output contains the transmit data.

PIPETXELECIDLEn Output MGTCLK This output forces the transmit output to electrical idle 
in all power states.

PIPETXPOWERDOWNn[1:0] Output MGTCLK This output is the Power Management signal for the 
transmitter for lane n:

00b: P0 (Normal operation)

01b: P0s (Low recovery time power-saving state)

10b: P1 (Longer recovery time power state)

11b: Reserved

PIPETXRCVRDETn Output MGTCLK When asserted, this output enables the GTP transceiver 
to begin either a receiver detection operation or 
loopback.

Table G-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface (Cont’d)

Port Direction Clock Domain Description
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Configuration Management Interface
The Configuration Management Interface contains these signal groupings:

• Management Interface Ports

• Error Reporting Ports

• Interrupt Generation and Status Ports

• Power Management Ports

• Configuration Specific Register Ports

• Miscellaneous Configuration Management Ports

Management Interface Ports
Table G-5 defines the Management Interface ports within the Configuration Management 
interface. These ports are used when reading and writing the Configuration Space 
Registers.

Error Reporting Ports
Table G-6 defines the Error Reporting ports within the Configuration Management 
interface. 

Table G-5: Management Interface Port Descriptions

Port Direction Clock Domain Description

CFGDO[31:0] Output USERCLK Management Data Out. This 32-bit data output obtains 
read data from the configuration space inside the 
integrated Endpoint block.

CFGDWADDR[9:0] Input USERCLK Management DWORD Address. This 10-bit address 
input provides a configuration register DWORD 
address during configuration register accesses.

CFGRDENN Input USERCLK Management Read Enable (active Low). This input is 
the read-enable for configuration register accesses.

CFGRDWRDONEN Output USERCLK Management Read or Write Done (active Low). The 
read-write done signal indicates successful completion 
of the user configuration register access operation. For a 
user configuration register read operation, this signal 
validates the value of the CFGDO[31:0] data bus. The 
integrated Endpoint block does not support write 
operations.

Table G-6: Error Reporting Port Descriptions

Port Direction Clock Domain Description

CFGERRCORN Input USERCLK Configuration Error Correctable Error (active Low). 
The user asserts this signal to report a Correctable 
Error. 

CFGERRCPLABORTN Input USERCLK Configuration Error Completion Aborted (active 
Low). The user asserts this signal to report a 
completion was aborted. This signal is ignored if 
CFGERRCPLRDYN is deasserted.
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CFGERRCPLRDYN Output USERCLK Configuration Error Completion Ready (active Low). 
When asserted, this signal indicates that the core can 
accept assertions on CFGERRURN and 
CFGERRCPLABORTN for Non-Posted Transactions. 
Assertions on CFGERRURN and 
CFGERRCPLABORTN are ignored when 
CFGERRCPLRDYN is deasserted.

CFGERRCPLTIMEOUTN Input USERCLK Configuration Error Completion Time-out (active 
Low). The user asserts this signal to report a 
completion timed out.

CFGERRECRCN Input USERCLK ECRC Error Report (active Low). The user asserts this 
signal to report an end-to-end CRC (ECRC) error. 

CFGERRLOCKEDN Input USERCLK Configuration Error Locked (active Low). This input is 
used to further qualify the CFGERRURN or 
CFGERRCPLABORTN input signal. When this input 
is asserted concurrently with one of those two signals, 
it indicates that the transaction that caused the error 
was an MRdLk transaction and not an MRd. The 
integrated Endpoint block generates a CplLk instead 
of a Cpl if the appropriate response is to send a 
Completion. 

CFGERRPOSTEDN Input USERCLK Configuration Error Posted (active Low). This input is 
used to further qualify any of the CFGERR* input 
signals. When this input is asserted concurrently with 
one of the other signals, it indicates that the 
transaction that caused the error was a posted 
transaction. 

CFGERRTLPCPLHEADER[47:0] Input USERCLK Configuration Error TLP Completion Header. This 
48-bit input accepts the header information from the 
user when an error is signaled. This information is 
required so that the integrated Endpoint block can 
issue a correct completion, if required. 

This information should be extracted from the 
received error TLP and presented in the listed format:

[47:41] Lower Address 

[40:29] Byte Count 

[28:26] TC 

[25:24] Attr 

[23:8] Requester ID 

[7:0] Tag

CFGERRURN Input USERCLK Configuration Error Unsupported Request (active 
Low). The user asserts this signal to report that an 
Unsupported Request (UR) was received. This signal 
is ignored if CFGERRCPLRDYN is deasserted.

Table G-6: Error Reporting Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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Interrupt Generation and Status Ports
Table G-7 defines the Interrupt Generation and Status ports within the Configuration 
Management interface.

Table G-7: Interrupt Generation and Status Port Descriptions

Port Direction Clock Domain Description

CFGINTERRUPTASSERTN Input USERCLK Configuration Legacy Interrupt 
Assert/Deassert Select. This input selects 
between Assert and Deassert messages for 
Legacy interrupts when CFGINTERRUPTN is 
asserted. It is not used for MSI interrupts. 

Value Message Type: 

0b: Assert 

1b: Deassert

CFGINTERRUPTDI[7:0] Input USERCLK Configuration Interrupt Data In. For Message 
Signaling Interrupts (MSI), this input provides 
the portion of the Message Data that the 
Endpoint must drive to indicate MSI vector 
number, if Multi-Vector Interrupts are enabled. 
The value indicated by 
CFGINTERRUPTMMENABLE[2:0] determines 
the number of lower-order bits of Message Data 
that the Endpoint provides; the remaining upper 
bits of CFGINTERRUPTDI[7:0] are not used. 

For Single-Vector Interrupts, 
CFGINTERRUPTDI[7:0] is not used. 

For Legacy Interrupt Messages (ASSERTINTX, 
DEASSERTINTX), this input indicates which 
message type is sent, where Value Legacy 
Interrupt is:

00h: INTA 

01h: INTB 

02h: INTC 

03h: INTD

CFGINTERRUPTDO[7:0] Output USERCLK Configuration Interrupt Data Out. This output is 
the value of the lowest eight bits of the Message 
Data field in the Endpoint’s MSI capability 
structure. This value is used in conjunction with 
CFGINTERRUPTMMENABLE[2:0] to drive 
CFGINTERRUPTDI[7:0].

CFGINTERRUPTMMENABLE[2:0] Output USERCLK Configuration Interrupt Multiple Message 
Enabled. This output has the value of the 
Multiple Message Enable field, where values 
range from 000b to 101b. A value of 000b 
indicates that single vector MSI is enabled. 
Other values indicate the number of bits that can 
be used for multi-vector MSI.

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 215
UG654 (v3.0) April 19, 2010

Configuration Management Interface

Power Management Ports
Table G-8 defines the Power Management ports within the Configuration Management 
interface.

CFGINTERRUPTMSIENABLE Output USERCLK Configuration Interrupt MSI Enabled. 

0: Only Legacy (INTx) interrupts can be sent

1: The Message Signaling Interrupt (MSI) 
messaging is enabled

CFGINTERRUPTN Input USERCLK Configuration Interrupt Request (active Low). 
When asserted, this input causes the selected 
interrupt message type to be transmitted by the 
integrated Endpoint block. The signal should be 
asserted until CFGINTERRUPTRDYN is 
asserted.

CFGINTERRUPTRDYN Output USERCLK Configuration Interrupt Ready (active Low). 
This output is the interrupt grant signal. The 
simultaneous assertion of 
CFGINTERRUPTRDYN and 
CFGINTERRUPTN indicates that the integrated 
Endpoint block has successfully transmitted the 
requested interrupt message.

Table G-7: Interrupt Generation and Status Port Descriptions (Cont’d)

Port Direction Clock Domain Description

Table G-8: Power Management Port Descriptions

Port Direction Clock Domain Description

CFGPMWAKEN Input USERCLK Send PMPME Message (active Low). A one-clock 
cycle assertion of this input signals the integrated 
Endpoint block to send a Power Management 
Wake Event (PMPME) Message TLP to the 
upstream link partner.

CFGTOTURNOFFN Output USERCLK Configuration To Turnoff: This output signal 
notifies the user that a PME_TURN_Off message 
has been received, and the Configuration and 
Capabilities Module (CCM) starts polling the 
CFGTURNOFFOKN input coming in from the 
user. When CFGTURNOFFOKN is asserted, the 
CMM sends a PME_To_Ack message to the 
upstream device.

CFGTURNOFFOKN Input USERCLK Configuration Turnoff OK (active Low). This input 
is the power turn-off ready signal. The user 
application can assert this input to notify the 
Endpoint that it is safe for power to be turned off. 
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Configuration Specific Register Ports
Table G-9 defines the Configuration Specific Register ports within the Configuration 
Management interface. These ports directly mirror the contents of commonly used 
registers located within the PCI Express Configuration Space.

Table G-9: Configuration Specific Register Port Descriptions

Port Direction Clock Domain Description

CFGCOMMANDBUSMASTERENABLE Output USERCLK Configuration Command, Bus Master 
Enable, Command[2]. The integrated 
Endpoint block takes no action based 
on this setting; the user logic must. 

When this output is asserted, the user 
logic is allowed to issue Memory or I/O 
Requests (including MSI interrupts); 
otherwise, the user logic must not issue 
those requests. 

CFGCOMMANDINTERRUPTDISABLE Output USERCLK Configuration Command, Interrupt 
Disable, Command[10]. When this 
output is asserted, the integrated 
Endpoint block is prevented from 
asserting INTx interrupts.

CFGCOMMANDIOENABLE Output USERCLK Configuration Command, I/O Space 
Enable, Command[0]. 

0: The integrated Endpoint block 
filters these accesses and responds 
with a UR.

1: Allows the device to receive I/O 
Space accesses. 

CFGCOMMANDMEMENABLE Output USERCLK Configuration Command, Memory 
Space Enable, Command[1]. 

0: The integrated Endpoint block 
filters these accesses and responds 
with a UR. 

1: Allows the device to receive 
Memory Space accesses. 

CFGCOMMANDSERREN Output USERCLK Configuration Command, SERR Enable 
(active Low), Command[8]. 

When this output is asserted, reporting 
of Non-fatal and Fatal errors is enabled. 
If enabled, errors are reported either 
through this bit or through the PCI 
Express specific bits in the Device 
Control Register. 

CFGDEVCONTROLAUXPOWEREN Output USERCLK Not used.

CFGDEVCONTROLCORRERRREPORTINGEN Output USERCLK Configuration Device Control, 
Correctable Error Reporting Enable, 
DEVICECTRL[0]. This bit, in 
conjunction with other bits, controls 
sending ERRCOR messages.
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CFGDEVCONTROLENABLERO Output USERCLK Configuration Device Control, Enable 
Relaxed Ordering, DEVICECTRL[4]. 
When this output is asserted, the user 
logic is permitted to set the Relaxed 
Ordering bit in the Attributes field of 
transactions it initiates that do not 
require strong write ordering.

CFGDEVCONTROLEXTTAGEN Output USERCLK Configuration Device Control, Tag 
Field Enable, DEVICECTRL[8]. When 
this output is asserted, the user logic 
can use an 8-bit Tag field as a Requester. 
When this output is deasserted, the user 
logic is restricted to a 5-bit Tag field. The 
integrated Endpoint block does not 
enforce the number of Tag bits used, 
either in outgoing request TLPs or 
incoming Completions.

CFGDEVCONTROLFATALERRREPORTINGEN Output USERCLK Configuration Device Control, Fatal 
Error Reporting Enable, 
DEVICECTRL[2]. This bit, in 
conjunction with other bits, controls 
sending ERRFATAL messages.

CFGDEVCONTROLMAXPAYLOAD[2:0] Output USERCLK Configuration Device Control, 
MAXPAYLOADSIZE, 
DEVICECTRL[7:5]. This field sets the 
maximum TLP payload size. As a 
Receiver, the user logic must handle 
TLPs as large as the set value. As a 
Transmitter, the user logic must not 
generate TLPs exceeding the set value. 

000b: 128-byte maximum payload 
size 

001b: 256-byte maximum payload 
size 

010b: 512-byte maximum payload 
size 

CFGDEVCONTROLMAXREADREQ[2:0] Output USERCLK Configuration Device Control, 
MAXREADREQUESTSIZE, 
DEVICECTRL[14:12]. This field sets the 
maximum Read Request size for the 
user logic as a Requester. The user logic 
must not generate Read Requests with 
size exceeding the set value. 

000b: 128-byte maximum Read 
Request size 

001b: 256-byte maximum Read 
Request size 

010b: 512-byte maximum Read 
Request size 

Table G-9: Configuration Specific Register Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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CFGDEVCONTROLNONFATALREPORTINGEN Output USERCLK Configuration Device Control, Non-
Fatal Error Reporting Enable, 
DEVICECTRL[1]. This bit, in 
conjunction with other bits, controls 
sending ERRNONFATAL messages.

CFGDEVCONTROLNOSNOOPEN Output USERCLK Configuration Device Control, Enable 
No Snoop, DEVICECTRL[11]. When 
this output is asserted, the user logic is 
permitted to set the No Snoop bit in 
TLPs it initiates that do not require 
hardware-enforced cache coherency.

CFGDEVCONTROLPHANTOMEN Output USERCLK Configuration Device Control, 
Phantom Functions Enable, 
DEVICECTRL[9]. When this output is 
asserted, the user logic can use 
unclaimed Functions as Phantom 
Functions to extend the number of 
outstanding transaction identifiers. If 
this output is deasserted, the user logic 
is not allowed to use Phantom 
Functions.

CFGDEVCONTROLURERRREPORTINGEN Output USERCLK Configuration Device Control, UR 
Reporting Enable, DEVICECTRL[3]. 
This bit, in conjunction with other bits, 
controls the signaling of URs by 
sending Error messages.

CFGDEVSTATUSCORRERRDETECTED Output USERCLK Configuration Device Status, 
Correctable Error Detected, 
DEVICESTATUS[0]. This output 
indicates the status of correctable errors 
detected. Errors are logged in this 
register regardless of whether error 
reporting is enabled or not in the Device 
Control Register.

CFGDEVSTATUSFATALERRDETECTED Output USERCLK Configuration Device Status, Fatal 
Error Detected, DEVICESTATUS[2]. 
This output indicates the status of Fatal 
errors detected. Errors are logged in this 
register regardless of whether error 
reporting is enabled or not in the Device 
Control Register.

CFGDEVSTATUSNONFATALERRDETECTED Output USERCLK Configuration Device Status, Non-Fatal 
Error Detected, DEVICESTATUS[1]. 
This output indicates the status of Non-
fatal errors detected. Errors are logged 
in this register regardless of whether 
error reporting is enabled or not in the 
Device Control Register.

Table G-9: Configuration Specific Register Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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CFGDEVSTATUSURDETECTED Output USERCLK Configuration Device Status, 
Unsupported Request Detected, 
DEVICESTATUS[3]. This output 
indicates that the integrated Endpoint 
block received a UR. Errors are logged 
in this register regardless of whether 
error reporting is enabled or not in the 
Device Control Register.

CFGLINKCONTROLASPMCONTROL[1:0] Output USERCLK Configuration Link Control, ASPM 
Control, LINKCTRL[1:0]. This 2-bit 
output indicates the level of ASPM 
supported, where: 

00b: Disabled

01b: L0s Entry Enabled

10b: Not used

11b: Not used

CFGLINKCONTROLCOMMONCLOCK Output USERCLK Configuration Link Control, Common 
Clock Configuration, LINKCTRL[6]. 
When this output is asserted, this 
component and the component at the 
opposite end of this Link are operating 
with a distributed common reference 
clock. When this output is deasserted, 
the components are operating with an 
asynchronous reference clock.

CFGLINKCONTROLEXTENDEDSYNC Output USERCLK Configuration Link Control, Extended 
Synch, LINKCTRL[7]. When this 
output is asserted, the transmission of 
additional Ordered Sets is forced when 
exiting the L0s state and when in the 
Recovery state.

CFGLINKCONTROLRCB Output USERCLK Configuration Link Control, RCB, 
LINKCTRL[3]. This output indicates 
the Read Completion Boundary value, 
where:

0: 64B

1: 128B

CFGTRNPENDINGN Input USERCLK User Transaction Pending (active Low). 
When asserted, this input sets the 
Transactions Pending bit in the Device 
Status Register (DEVICESTATUS[5]). 

Note: The user is required to assert this 
input if the User Application has not 
received a completion to a request.

Table G-9: Configuration Specific Register Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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Miscellaneous Configuration Management Ports
Table G-10 defines the Miscellaneous ports within the Configuration Management 
interface.

Table G-10: Miscellaneous Configuration Management Port Descriptions

Port Direction Clock Domain Description

CFGBUSNUMBER[7:0] Output USERCLK Configuration Bus Number. This 8-bit output provides the 
assigned bus number for the device. The user application 
must use this information in the Bus Number field of 
outgoing TLP requests. The default value after reset is 
00h. This output is refreshed whenever a Type 0 
Configuration Write packet is received.

CFGDEVICENUMBER[4:0] Output USERCLK Configuration Device Number: This 5-bit output provides 
the assigned device number for the device. The user 
application must use this information in the Device 
Number field of outgoing TLP requests. The default value 
after reset is 00000b. This output is refreshed whenever a 
Type 0 Configuration Write packet is received.

CFGDEVID[15:0] Input USERCLK Device ID value. This 16-bit input must be stable when 
SYSRESETN is deasserted.

CFGDSN[63:0] Input USERCLK Configuration Device Serial Number. This 64-bit input 
indicates the value that should be transferred to the Device 
Serial Number Capability. 

CFGFUNCTIONNUMBER[2:0] Output USERCLK Configuration Function Number. This 3-bit output 
provides the function number for the device. The user 
application must use this information in the Function 
Number field of outgoing TLP requests. The function 
number is hardwired to 000b.
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CFGLTSSMSTATE[4:0] Output MGTCLK This 5-bit output is a mirror of the LTSSM state machine 
bits:

00000b: Detect.Quiet

00001b: Detect.Active

00010b: Polling.Active

00011b: Polling.Config

00100b: Polling Compliance

00101b: Configuration.Linkwidth.Start

00110b: Configuration.Linkwidth.Start

00111b: Configuration.Linkwidth.Accept

01000b: Configuration.Linkwidth.Accept

01001b: Configuration.Lanenum.Wait

01010b: Configuration.Lanenum.Accept

01011b: Configuration.Complete

01100b: Configuration.Idle

01101b: L0

01110b: L1.Entry

01111b: L1.Entry

10000b: L1.Entry

10001b: L1.Idle

10010b: L1.Exit-to-recovery

10011b: Recovery.RcvrLock

10100b: Recovery.RcvrCfg

10101b: Recovery.Idle

10110b: Hot Reset

10111b: Disabled

11000b: Disabled

11001b: Disabled

11010b: Disabled

11011b: Detect.Quiet

CFGPCIELINKSTATEN[2:0] Output USERCLK PCI Express Link State. This encoded bus reports the PCI 
Express Link State Information to the user:

110b: L0 state

101b: L0s state

011b: L1 state

111b: Under transition

CFGREVID[7:0] Input USERCLK Revision ID Value. This input must be stable when 
SYSRESETN is deasserted.

CFGSUBSYSID[15:0] Input USERCLK Subsystem ID Value. This input must be stable when 
SYSRESETN is deasserted.

Table G-10: Miscellaneous Configuration Management Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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Debug Interface Ports
Table G-11 describes the Debug Interface ports.

CFGSUBSYSVENID[15:0] Input USERCLK Subsystem Vendor ID Reset Value. This input must be 
stable when SYSRESETN is deasserted.

CFGVENID[15:0] Input USERCLK Vendor ID Value. This input must be stable when 
SYSRESETN is deasserted.

Table G-10: Miscellaneous Configuration Management Port Descriptions (Cont’d)

Port Direction Clock Domain Description

Table G-11: Debug Interface Port Descriptions

Port Direction Clock Domain Description

DBGBADDLLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when a DLLP CRC error is detected.

DBGBADTLPLCRC Output USERCLK This signal pulses High for one USERCLK cycle 
when a TLP with an LCRC error is detected.

DBGBADTLPSEQNUM Output USERCLK This signal pulses High for one USERCLK cycle 
when a TLP with an invalid sequence number 
is detected.

DBGBADTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when a bad TLP is detected, for reasons other 
than a bad LCRC or a bad sequence number.

DBGDLPROTOCOLSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
if an out-of-range ACK or NAK is received.

DBGFCPROTOCOLERRSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
if there is a protocol error with the received 
flow control updates.

DBGMLFRMDLENGTH Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a received TLP had a length that 
did not match what was in the TLP header.

DBGMLFRMDMPS Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a received TLP had a length in 
violation of the negotiated MPS.

DBGMLFRMDTCVC Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a received TLP had an invalid 
TC or VC value.

DBGMLFRMDTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when a malformed TLP is received. See the 
other DBGMLFRMD* signals for further 
clarification.

Note: There is skew between DBGMLFRMD* 
and DBGMLFRMDTLPSTATUS.

DBGMLFRMDUNRECTYPE Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a received TLP had an 
invalid/unrecognized type field value.
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DBGPOISTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
if a poisoned TLP is received.

DBGRCVROVERFLOWSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
if a received TLP violates the advertised credit.

DBGREGDETECTEDCORRECTABLE Output USERCLK This signal is a mirror of the internal signal 
used to indicate a correctable error is detected. 
The error is cleared upon a read by the Root 
Complex (RC).

DBGREGDETECTEDFATAL Output USERCLK This signal is a mirror of the internal signal 
used to indicate that a fatal error has been 
detected. The error is cleared upon a read by 
the RC.

DBGREGDETECTEDNONFATAL Output USERCLK This signal is a mirror of the internal signal 
used to indicate that a non-fatal error has been 
detected. The error is cleared upon a read by 
the RC.

DBGREGDETECTEDUNSUPPORTED Output USERCLK This signal is a mirror of the internal signal 
used to indicate that an unsupported request 
has been detected. The error is cleared upon a 
read by the RC.

DBGRPLYROLLOVERSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when the rollover counter expires.

DBGRPLYTIMEOUTSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when the replay time-out counter expires.

DBGURNOBARHIT Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a received read or write request 
did not match any configured BAR.

DBGURPOISCFGWR Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that a CfgWr TLP with the 
Error/Poisoned bit (EP) = 1 was received.

DBGURSTATUS Output USERCLK This signal pulses High for one USERCLK cycle 
when an unsupported request is received. See 
the DBGUR* signals for further clarification.

Note: There is skew between DBGUR* and 
DBGURSTATUS.

DBGURUNSUPMSG Output USERCLK This signal pulses High for one USERCLK cycle 
to indicate that an Msg or MsgD TLP with an 
unsupported type was received.

Table G-11: Debug Interface Port Descriptions (Cont’d)

Port Direction Clock Domain Description
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Appendix H

PCIE_A1 Attribute Descriptions

Table H-1 defines the attributes on the PCIE_A1 library primitive for the Spartan®-6 FPGA 
Integrated Endpoint Block for PCI Express® designs. All attributes are set in the 
LogiCORE™ IP; they are documented in this chapter for reference. Users should not 
change the attribute settings as set in the CORE Generator™ software GUI for proper 
operation of the design.
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Table H-1: PCIE_A1 Attributes

Attribute Name Type Description

BAR0 32-bit 
Hex

This attribute specifies the mask/settings for Base 
Address Register (BAR) 0. If BAR is not to be 
implemented, this attribute is set to 32'h00000000. 
Bits are defined as follows:

• Memory Space BAR:

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit 
BAR, the uppermost 31:n bits are set to 1, where 
2n = memory aperture size in bytes. For a 64-bit BAR, 
the uppermost 63:n bits of {BAR1, BAR0} are set to 1. 

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

BAR1 32-bit 
Hex

This attribute specifies the mask/settings for BAR1 if 
BAR0 is a 32-bit BAR, or the upper bits of {BAR1, BAR0} 
if BAR0 is a 64-bit BAR. If BAR is not to be implemented, 
this attribute is set to 32'h00000000. See the BAR0 
description if this attribute functions as the upper bits of 
a 64-bit BAR. Bits are defined as follows:

• Memory Space BAR (not the upper bits of BAR0):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit 
BAR, the uppermost 31:n bits are set to 1, where 
2n = memory aperture size in bytes. For a 64-bit BAR, 
the uppermost 63:n bits of {BAR2, BAR1} are set to 1. 

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 227
UG654 (v3.0) April 19, 2010

BAR2 32-bit 
Hex

For an Endpoint, this attribute specifies the 
mask/settings for BAR2 if BAR1 is a 32-bit BAR, or the 
upper bits of {BAR2, BAR1} if BAR1 is the lower part of 
a 64-bit BAR. If BAR is not to be implemented, this 
attribute is set to 32'h00000000. See the BAR1 
description if this attribute functions as the upper bits of 
a 64-bit BAR.

For an Endpoint, bits are defined as follows:

• Memory Space BAR (not upper bits of BAR1):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit 
BAR, the uppermost 31:n bits are set to 1, where 
2n = memory aperture size in bytes. For a 64-bit BAR, 
the uppermost 63:n bits of {BAR3, BAR2} are set to 1. 

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

BAR3 32-bit 
Hex

For an Endpoint, this attribute specifies the 
mask/settings for BAR3 if BAR2 is a 32-bit BAR, or the 
upper bits of {BAR3, BAR2} if BAR2 is the lower part of 
a 64-bit BAR. If BAR is not to be implemented, this 
attribute is set to 32'h00000000. See the BAR2 
description if this functions as the upper bits of a 64-bit 
BAR.

For an Endpoint, bits are defined as follows:

• Memory Space BAR (not upper bits of BAR2):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit 
BAR, the uppermost 31:n bits are set to 1, where 
2n = memory aperture size in bytes. For a 64-bit BAR, 
the uppermost 63:n bits of {BAR4, BAR3} are set to 1. 

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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BAR4 32-bit 
Hex

For an Endpoint, this attribute specifies mask/settings 
for Base Address Register (BAR) 4 if BAR3 is a 32-bit 
BAR, or the upper bits of {BAR4, BAR3}, if BAR3 is the 
lower part of a 64-bit BAR. If BAR is not to be 
implemented, this attribute is set to 32'h00000000. 
See the BAR3 description if this functions as the upper 
bits of a 64-bit BAR.

For an Endpoint, bits are defined as follows:

• Memory Space BAR (not upper bits of BAR3):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit 
BAR, the uppermost 31:n bits are set to 1, where 
2n = memory aperture size in bytes. For a 64-bit BAR, 
the uppermost 63:n bits of {BAR5, BAR4} to 1. 

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

BAR5 32-bit 
Hex

For an Endpoint, this attribute specifies mask/settings 
for BAR5 if BAR4 is a 32-bit BAR or the upper bits of 
{BAR5, BAR4} if BAR4 is the lower part of a 64-bit BAR. 
If BAR is not to be implemented, this attribute is set to 
32'h00000000. See the BAR4 description if this 
functions as the upper bits of a 64-bit BAR.

For an Endpoint, bits are defined as follows:

• Memory Space BAR (not upper bits of BAR4):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (00 for 32-bit; BAR5 cannot be the 
lower part of a 64-bit BAR)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = memory aperture 
size in bytes

• I/O Space BAR:

0: I/O Space Indicator (set to 1)

1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost 
31:n bits are set to 1, where 2n = I/O aperture size in 
bytes

CARDBUS_CIS_POINTER 32-bit 
Hex

Pointer to the Cardbus data structure. This value is 
transferred to the Cardbus CIS Pointer Register. It is set 
to 0 if the Cardbus pointer is not implemented.

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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CLASS_CODE 24-bit 
Hex

Code identifying basic function, subclass, and 
applicable programming interface. This value is 
transferred to the Class Code Register.

DEV_CAP_ENDPOINT_L0S_LATENCY 3-bit 
Binary

Endpoint L0s Acceptable Latency. This attribute records 
the latency that the Endpoint can withstand on 
transitions from the L0s state to the L0 state. Valid 
settings are:

000b: Less than 64 ns

001b: 64 ns to 128 ns

010b: 128 ns to 256 ns

011b: 256 ns to 512 ns

100b: 512 ns to 1 µs

101b: 1 µs to 2 µs

110b: 2 µs to 4 µs

111b: More than 4 µs

DEV_CAP_ENDPOINT_L1_LATENCY 3-bit 
Binary

Endpoint L1 Acceptable Latency. Records the latency 
that the endpoint can withstand on transitions from the 
L1 state to the L0 state (if the L1 state is supported). 
Valid settings are:

000b: Less than 1 µs

001b: 1 µs to 2 µs

010b: 2 µs to 4 µs

011b: 4 µs to 8 µs

100b: 8 µs to 16 µs

101b: 16 µs to 32 µs

110b: 32 µs to 64 µs

111b: More than 64 µs

DEV_CAP_EXT_TAG_SUPPORTED Boolean Extended Tags support. 

FALSE: 5-bit tag

TRUE: 8-bit tag

DEV_CAP_MAX_PAYLOAD_SUPPORTED 3-bit 
Binary

This attribute specifies the maximum payload 
supported. Valid (supported) settings are: 

000b: 128 bytes

001b: 256 bytes

010b: 512 bytes

This value is transferred to the Device Capabilities 
Register. 

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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DEV_CAP_PHANTOM_FUNCTIONS_SUPPOR
T

2-bit 
Binary

Phantom Function Support. This attribute indicates the 
number of functions re-allocated as Tag bits. Valid 
settings are: 

00b: 0

01b: 1

10b: 2

11b: 3

DEV_CAP_ROLE_BASED_ERROR Boolean When this attribute is set to TRUE, compliant error 
reporting is supported.

DISABLE_BAR_FILTERING Boolean When this attribute is set to TRUE, BAR filtering is 
disabled. This setting does not change the behavior of 
the BAR hit outputs.

DISABLE_ID_CHECK Boolean When this attribute is set to TRUE, checking for 
Requester ID of received completions is disabled.

DISABLE_SCRAMBLING Boolean When this attribute is TRUE, Scrambling of transmit 
data is turned off.

ENABLE_RX_TD_ECRC_TRIM Boolean When this attribute is set to TRUE, received TLPs have 
their td bit set to 0 and the ECRC is removed.

EXPANSION_ROM 22-bit 
Hex

This attribute specifies the mask/settings for the 
Expansion ROM BAR. If the BAR is not to be 
implemented, this attribute is set to 22'h00000000.

Bits are defined as follows:

0: Expansion ROM implemented (set to 1 to 
implement ROM)

[21:1]: Mask for writable bits of BAR. The uppermost 
21:n bits are set to 1, where 2n = ROM aperture size in 
bytes

FAST_TRAIN Boolean When this attribute is set to TRUE, the timers in the 
LTSSM state machine are shortened to reduce 
simulation time. Specifically, the transition out of 
Polling.Active requires sending 16 TS1s and receiving 8 
TS1s. The LTSSM timer values of 1 ms, 2 ms, 12 ms, 
24 ms, and 48 ms are reduced to 3.9 µs, 7.81 µs, 46.8 µs, 
93.75 µs, and 187.5 µs, respectively (reduced by a factor 
of 256). This attribute must be set to FALSE for silicon 
designs.

GTP_SEL Boolean This attribute indicates which port interface is used: 

FALSE: Transceiver A port interface

TRUE: Transceiver B port interface

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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LINK_CAP_ASPM_SUPPORT 2-bit 
Binary

Active State PM Support. This attribute indicates the 
level of active state power management supported by 
the selected PCI Express Link:

00b: Reserved

01b: L0s entry supported

10b: Reserved

11b: Reserved

LINK_CAP_L0S_EXIT_LATENCY 3-bit 
Binary

This attribute sets the exit latency from the L0s state to 
be applied (at 2.5 Gb/s) where a common clock is used. 
This value is transferred to the Link Capabilities 
Register.

Valid settings are:

000b: Less than 64 ns

001b: 64 ns to less than 128 ns

010b: 128 ns to less than 256 ns

011b: 256 ns to less than 512 ns

100b: 512 ns to less than 1 µs

101b: 1 µs to less than 2 µs

110b: 2 µs to 4 µs

111b: More than 4 µs

LINK_CAP_L1_EXIT_LATENCY 3-bit 
Binary

This attribute sets the exit latency from the L1 state to be 
applied (at 2.5 Gb/s) where a common clock is used. 
This value is transferred to the Link Capabilities 
Register.

Valid settings are:

000b: Less than 1 µs

001b: 1 µs to less than 2 µs

010b: 2 µs to less than 4 µs

011b: 4 µs to less than 8 µs

100b: 8 µs to less than 16 µs

101b: 16 µs to less than 32 µs

110b: 32 µs to 64 µs

111b: More than 64 µs

LINK_STATUS_SLOT_CLOCK_CONFIG Boolean Slot Clock Configuration. This attribute indicates where 
the component uses the same physical reference clock 
that the platform provides on the connector. For a port 
that connects to the slot, this attribute indicates that it 
uses a clock with a common source to that used by the 
slot. For an adaptor inserted in the slot, this attribute 
indicates that it uses the same clock source as the slot, 
not a locally derived clock source. This value is 
transferred to the Link Status Register, bit 12.

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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LL_ACK_TIMEOUT 15-bit 
Hex

This attribute sets an ACK time-out counter override 
value. The value is in increments of USERCLK periods. 
It should be set to 0 unless the user wishes to override 
the default (internal) setting.

LL_ACK_TIMEOUT_EN Boolean When set to TRUE, the value specified by 
LL_ACK_TIMEOUT is added to the internal value, 
increasing the ACK Timeout delay. 

When set to FALSE, the value provided on 
LL_ACK_TIMEOUT is subtracted from the internal 
value, decreasing the ACK Timeout delay

LL_REPLAY_TIMEOUT 15-bit 
Hex

This attribute sets a replay timer override value. The 
value is in increments of USERCLK periods. It should be 
set to 0 unless the user wishes to override the default 
(internal) setting.

LL_REPLAY_TIMEOUT_EN Boolean When set to TRUE, the value specified by 
LL_REPLAY_TIMEOUT is added to the internal value, 
increasing the Replay Timeout delay. 

When set to FALSE, the value provided on 
LL_REPLAY_TIMEOUT is subtracted from the internal 
value, decreasing the Replay Timeout delay

MSI_CAP_MULTIMSG_EXTENSION Boolean Multiple Message Capable Extension. When set to 
TRUE, this attribute allows 256 unique messages to be 
sent by the user regardless of the setting of 
MSI_CAP_MULTIMSGCAP). 

Note: Enabling this feature (TRUE) violates the PCI 
Express Base Specification and should only be used in 
closed systems.

MSI_CAP_MULTIMSGCAP 3-bit 
Binary

Multiple Message Capable. Each MSI function can 
request up to 32 unique messages. System software can 
read this field to determine the number of messages 
requested. The number of messages requested are 
encoded as follows:

000b: 1 vector 

001b: 2 vectors

010b: 4 vectors

011b: 8 vectors

100b: 16 vectors

101b: 32 vectors

110b - 111b: Reserved

PCIE_CAP_CAPABILITY_VERSION 4-bit 
Hex

This attribute indicates the version number of the 
PCI-SIG defined PCI Express capability structure. It 
must be set to 0001b.

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description
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PCIE_CAP_DEVICE_PORT_TYPE 4-bit 
Hex

This attribute identifies the type of device/port. Valid 
settings are (all other values are unsupported):

0000b: PCI Express Endpoint device

0001b: Legacy PCI Express Endpoint device

This value is transferred to the PCI Express Capabilities 
Register. 

PCIE_CAP_INT_MSG_NUM 5-bit 
Hex

Interrupt Message Number. This value is transferred to 
the PCI Express Cap Register [13:9]. It is not used 
internally by the integrated Endpoint block.

PCIE_CAP_SLOT_IMPLEMENTED Boolean This attribute must be set to FALSE.

PCIE_GENERIC 12-bit 
Hex

The 12 bits are assigned as follows:

11: This bit must be 0.

10: 

• 0: Electrical idle is not received until an Electrical 
Idle Ordered Set (EIOS) is received, if no EIOS core 
enters the LTSSM RECOVERY state

• 1: An electrical idle can occur without an EIOS 
(the EIOS is assumed). This is the default and 
recommended setting.

[9:7]: These bits drive the Interrupt Pin Register in the 
PCI Configuration Space. A value of 0 indicates no 
Legacy interrupts are implemented. Values of 1, 2, 3, 
and 4 indicate INTA, INTB, INTC, and INTD, 
respectively. Other values are not permitted. 

6: 

• 0: The DSN Extended Capability is not 
implemented

• 1: The DSN Extended Capability is implemented

5: 

• 0: 8B/10B Not_in_table is not inferred
• 1: 8B/10B Not_in_table from the GTP transceiver 

is inferred from RXSTATUS. This is the default 
and recommended setting.

4: 

• 0: A read to an unimplemented config space 
returns completion with data of zero. This is the 
default and recommended setting.

• 1: A read to an unimplemented config space 
returns a UR (legacy behavior of PIPE)

[3:0]: These bits drive nFTS[7:4]. The lower bits of 
nFTS are set to Fh. The default value is 0xF.

PLM_AUTO_CONFIG Boolean This attribute must be set to FALSE.

Table H-1: PCIE_A1 Attributes (Cont’d)
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PM_CAP_AUXCURRENT 3-bit 
Binary

AUX Current. Requested auxiliary current allocation. 
This value is transferred to the PM Capabilities Register, 
bits [24:22]. The integrated Endpoint block does not 
support AUX power, so this field should be set to 000b.

PM_CAP_D1SUPPORT Boolean D1 Support. This value is transferred to the PM 
Capabilities Register, bit 25.

PM_CAP_D2SUPPORT Boolean D2 Support. This value is transferred to the PM 
Capabilities Register, bit 26.

PM_CAP_DSI Boolean Device Specific Initialization (DSI). This value is 
transferred to the PM Capabilities Register, bit 21.

PM_CAP_PME_CLOCK Boolean When this attribute is set to TRUE, a PCI™ clock is 
required for PME generation. This attribute must be set 
to FALSE per the specification. The value is transferred 
to the PM Capabilities Register, bit 19.

PM_CAP_PMESUPPORT 5-bit 
Hex

PME Support. These five bits indicate support for 
D3cold, D3hot, D2, D1, and D0, respectively. This value 
is transferred to the PM Capabilities Register, bits 
[31:27].

PM_CAP_VERSION 3-bit 
Binary

The version of Power Management specification 
followed. This value is transferred to the PM 
Capabilities Register, bits [18:16].

This attribute must be set to 3.

PM_DATA_SCALE0 2-bit 
Hex

Power Management Data Scale Register 0. This attribute 
specifies the scale applied to PM_DATA0. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are: 

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE1 2-bit 
Hex

Power Management Data Scale Register 1. This attribute 
specifies the scale applied to PM_DATA1. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 235
UG654 (v3.0) April 19, 2010

PM_DATA_SCALE2 2-bit 
Hex

Power Management Data Scale Register 2. This attribute 
specifies the scale applied to PM_DATA2. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are: 

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE3 2-bit 
Hex

Power Management Data Scale Register 3. This attribute 
specifies the scale applied to PM_DATA3. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are: 

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE4 2-bit 
Hex

Power Management Data Scale Register 4. This attribute 
specifies the scale applied to PM_DATA4. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE5 2-bit 
Hex

Power Management Data Scale Register 5. This attribute 
specifies the scale applied to PM_DATA5. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are: 

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

Table H-1: PCIE_A1 Attributes (Cont’d)
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PM_DATA_SCALE6 2-bit 
Hex

Power Management Data Scale Register 6. This attribute 
specifies the scale applied to PM_DATA6. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are: 

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE7 2-bit 
Hex

Power Management Data Scale Register 7. This attribute 
specifies the scale applied to PM_DATA7. The power 
consumption of the device is determined by multiplying 
the contents of the Base Power Data Register field with 
the value corresponding to the encoding returned by 
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA0 8-bit 
Hex

Power Management Data Register 0 (D0 Power 
Consumed). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0000b to the Data Select field of the PM Control 
Register. 

PM_DATA1 8-bit 
Hex

Power Management Data Register 1 (D1 Power 
Consumed). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0001b to the Data Select field of the PM Control 
Register. 

PM_DATA2 8-bit 
Hex

Power Management Data Register 2 (D2 Power 
Consumed). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0010b the Data Select field of the PM Control Register. 

PM_DATA3 8-bit 
Hex

Power Management Data Register 3 (D3 Power 
Consumed). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0011b to the Data Select field of the PM Control 
Register. 

PM_DATA4 8-bit 
Hex

Power Management Data Register 4 (D0 Power 
Dissipated). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0100b to the Data Select field of the PM Control 
Register. 
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PM_DATA5 8-bit 
Hex

Power Management Data Register 5 (D1 Power 
Dissipated). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0101b to the Data Select field of the PM Control 
Register. 

PM_DATA6 8-bit 
Hex

Power Management Data Register 6 (D2 Power 
Dissipated). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0110b to the Data Select field of the PM Control 
Register. 

PM_DATA7 8-bit 
Hex

Power Management Data Register 7 (D3 Power 
Dissipated). This value appears in the Data field of the 
PM Status Register if the host has written the value 
0111b to the Data Select field of the PM Control 
Register. 

SLOT_CAP_ATT_BUTTON_PRESENT Boolean Attention Button Present. When this attribute is TRUE, 
an Attention Button is implemented on the chassis for 
this slot. This value is transferred to the Slot Capabilities 
Register. 

This attribute must be set to FALSE for Endpoints.

SLOT_CAP_ATT_INDICATOR_PRESENT Boolean Attention Indicator Present. When this attribute is 
TRUE, an Attention Indicator is implemented on the 
chassis for this slot. This value is transferred to the Slot 
Capabilities Register. 

This attribute must be set to FALSE for Endpoints.

SLOT_CAP_POWER_INDICATOR_PRESENT Boolean Power Indicator Present. When this attribute is TRUE, a 
Power Indicator is implemented on the chassis for this 
slot. This value is transferred to the Slot Capabilities 
Register. 

This attribute must be set to FALSE for Endpoints.

TL_RX_RAM_RADDR_LATENCY Boolean This attribute specifies the read address latency for RX 
RAMs in terms of USER_CLK cycles. 

FALSE: No fabric pipeline register is on the read 
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the read 
address and enable block RAM inputs

TL_RX_RAM_RDATA_LATENCY 2-bit 
Binary

This attribute specifies the read data latency for RX 
RAMs in terms of USER_CLK cycles. 

01b: The block RAM output register is disabled

10b: The block RAM output register is enabled

11b: The block RAM output register is enabled and a 
fabric pipeline register is added to the block RAM 
data output

Table H-1: PCIE_A1 Attributes (Cont’d)
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TL_RX_RAM_WRITE_LATENCY Boolean This attribute specifies the write latency for RX RAMs in 
terms of cycles of USER_CLK. 

FALSE: No fabric pipeline register is on the write 
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the write 
address and enable block RAM inputs

TL_TFC_DISABLE Boolean When this attribute is set to TRUE, checking of flow 
control values and transmit packets in the order they 
were presented on the TRN TX interface is disabled.

TL_TX_CHECKS_DISABLE Boolean When this attribute is set to TRUE, all TLM checks of 
incoming data are disabled.

TL_TX_RAM_RADDR_LATENCY Boolean This attribute specifies the read address latency for TX 
RAMs in terms of USER_CLK cycles. 

FALSE: No fabric pipeline register on the read 
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the read 
address and enable block RAM inputs

TL_TX_RAM_RDATA_LATENCY 2-bit 
Binary

This attribute specifies the read data latency for TX 
RAMs in terms of USER_CLK cycles. 

01b: The block RAM output register is disabled

01b: The block RAM output register is enabled

11b: The block RAM output register is enabled and a 
fabric pipeline register is added to the block RAM 
data output

USR_CFG Boolean When this attribute is set to TRUE, the user application 
is permitted to add or implement PCI Legacy capability 
registers beyond address BFh. This option should be 
selected when the user application implements such a 
legacy capability configuration space, starting at C0h.

USR_EXT_CFG Boolean When this attribute is set to TRUE, the user application 
is permitted to add or implement PCI Express extended 
capability registers beyond address 1FFh. This box 
should be checked when the user application 
implements such an extended capability configuration 
space starting at 200h.

VC0_CPL_INFINITE Boolean When this attribute is set to TRUE, the block advertises 
infinite completions. 

Note: For Endpoints, this attribute must be set to TRUE 
for compliance.

VC0_RX_RAM_LIMIT 12-bit 
Hex

This attribute must be set to RX buffer bytes/4.

Table H-1: PCIE_A1 Attributes (Cont’d)

Attribute Name Type Description

http://www.xilinx.com


Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 239
UG654 (v3.0) April 19, 2010

VC0_TOTAL_CREDITS_CD 11-bit 
Hex

Number of credits that should be advertised for 
Completion data received on Virtual Channel 0. The 
bytes advertised must be less than or equal to the block 
RAM bytes available.

The equation to calculate bytes advertised is:

(ph * (rx_td_ecrc_trim ? 16 : 20)) + (pd * 16) + (nph * 20) 
+ (ch * 16) + (cd * 16)

The equation to calculate block RAM bytes available is:

(vc0_rx_ram_limit + 1) * 4

See Table H-2, page 240 for valid settings.

VC0_TOTAL_CREDITS_CH 7-bit 
Hex

Number of credits that should be advertised for 
Completion headers received on Virtual Channel 0. The 
sum of the Posted, Non-Posted, and Completion header 
credits must be < 80.

See Table H-2, page 240 for valid settings.

VC0_TOTAL_CREDITS_NPH 7-bit 
Hex

Number of credits that should be advertised for Non-
Posted headers received on Virtual Channel 0. The 
number of Non-Posted data credits advertised by the 
block is equal to the number of Non-Posted header 
credits. The sum of the Posted, Non-Posted, and 
Completion header credits must be < 80.

This attribute must be set to 8.

VC0_TOTAL_CREDITS_PD 11-bit 
Hex

Number of credits that should be advertised for Posted 
data received on Virtual Channel 0. The bytes advertised 
must be less than or equal to the block RAM bytes 
available.

The equation to calculate bytes advertised is:

(ph * (rx_td_ecrc_trim ? 16 : 20)) + (pd * 16) + (nph * 20) 
+ (ch * 16) + (cd * 16)

The equation to calculate block RAM bytes available is:

(vc0_rx_ram_limit + 1) * 4

See Table H-2, page 240 for valid settings.

VC0_TOTAL_CREDITS_PH 7-bit 
Hex

Number of credits that should be advertised for Posted 
headers received on Virtual Channel 0. The sum of the 
Posted, Non-Posted, and Completion header credits 
must be < 80.

VC0_TX_LASTPACKET 5-bit 
Hex

Index of the last packet buffer used by TX TLM (that is, 
the number of buffers – 1). This value is calculated from 
the maximum payload size supported and the number 
of block RAMs configured for transmit. 

The equation is: 

((TX buffer bytes) / (MPS_in_bytes + 20) - 1)

See Table H-2 for valid settings.
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Table H-2: Valid Data Credit Combinations

Parameter Name Valid Combinations

DEV_CAP_MAX_PAYLOAD_SUPPORTED 0 0 1 1 2 2

VC0_TOTAL_CREDITS_PD 36 92 92 204 204 716

VC0_TOTAL_CREDITS_CD 64 128 128 256 256 256

VC0_TOTAL_CREDITS_CH 8 16 16 32 32 32

VC0_TX_LAST_PACKET 12 26 13 28 14 29
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Appendix I

PCIE_A1 Timing Parameter 
Descriptions

This appendix lists the timing parameter names and descriptions related to the 
Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® designs. This information 
is useful for debugging timing issues. Values for these timing parameters can be obtained 
by running the Speedprint tool. Usage of Speedprint is documented in the Development 
System Reference Guide.

The timing parameters on the integrated Endpoint block consist of either Setup/Hold or 
Clock-to-Out parameters. Table I-1 lists the timing parameter names, descriptions, signal 
grouping, and related clock domain for a given parameter. In the table, parameter 
Tpcicck_XXX is a setup time (before the clock edge), and parameter Tpcickc_XXX is a hold 
time (after clock edge).
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Table I-1: PCIE_A1 Timing Parameters

Name Clock Domain Signal Grouping

Sequential Setup and Hold Times for Integrated Endpoint Block Inputs

Tpcicck_CFG / 
Tpcickc_CFG

USERCLK CFGDEVID[15:0]

CFGDSN[63:0]

CFGDWADDR[9:0]

CFGERRCORN

CFGERRCPLTIMEOUTN

CFGERRECRCN

CFGERRLOCKEDN

CFGERRPOSTEDN

CFGERRTLPCPLHEADER[47:0]

CFGERRURN

CFGINTERRUPTASSERTN

CFGINTERRUPTDI[7:0]

CFGINTERRUPTN

CFGRDENN

CFGREVID[7:0]

CFGSUBSYSID[15:0]

CFGSUBSYSVENID[15:0]

CFGTRNPENDINGN

CFGVENID[15:0]

TRNTCFGGNTN

Tpcicck_ERR / 
Tpcickc_ERR

USERCLK CFGERRCPLABORTN
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Tpcicck_MGT / 
Tpcickc_MGT

MGTCLK PIPEGTRESETDONEA

PIPEGTRESETDONEB

PIPEPHYSTATUSA

PIPEPHYSTATUSB

PIPERXCHARISKA[1:0]

PIPERXCHARISKB[1:0]

PIPERXDATAA[15:0]

PIPERXDATAB[15:0]

PIPERXENTERELECIDLEA

PIPERXENTERELECIDLEB

PIPERXSTATUSA[2:0]

PIPERXSTATUSB[2:0]

Tpcicck_PWR / 
Tpcickc_PWR

USERCLK CFGPMWAKEN

CFGTURNOFFOKN

Tpcicck_SCAN / 
Tpcickc_SCAN

USERCLK SCANEN

SCANIN[4:0]

SCANRESETMASK

Tpcidck_LOCKED / 
Tpcickd_LOCKED

USERCLK CLOCKLOCKED

Tpcidck_RESET / 
Tpcickd_RESET

USERCLK SYSRESETN

Tpcidck_RXRAM / 
Tpcickd_RXRAM

USERCLK MIMRXRDATA[34:0]

Tpcidck_TRNFC / 
Tpcickd_TRNFC

USERCLK TRNFCSEL[2:0]

Tpcidck_TRNRD / 
Tpcickd_TRNRD

USERCLK TRNRDSTRDYN

Tpcidck_TRNRN / 
Tpcickd_TRNRN

USERCLK TRNRNPOKN

Tpcidck_TRNTD / 
Tpcickd_TRNTD

USERCLK TRNTD[31:0]

Tpcidck_TRNTE / 
Tpcickd_TRNTE

USERCLK TRNTEOFN

TRNTERRFWDN
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Tpcidck_TRNTS / 
Tpcickd_TRNTS

USERCLK TRNTSOFN

TRNTSRCDSCN

TRNTSRCRDYN

TRNTSTRN

Tpcidck_TXRAM / 
Tpcickd_TXRAM

USERCLK MIMTXRDATA[35:0]

Sequential Clock to Output Times for Integrated Endpoint Block Outputs

Tpcicko_CFG USERCLK CFGCOMMANDINTERRUPTDISABLE

CFGDEVCONTROLMAXPAYLOAD[2:0]

CFGDEVCONTROLMAXREADREQ[2:0]

Tpcicko_CFGBUS USERCLK CFGBUSNUMBER[7:0]

Tpcicko_CFGCOMMAND USERCLK CFGCOMMANDSERREN

Tpcicko_CFGDEV USERCLK CFGDEVCONTROLCORRERRREPORTINGEN

CFGDEVCONTROLEXTTAGEN

CFGDEVCONTROLFATALERRREPORTINGEN

CFGDEVCONTROLNONFATALREPORTINGEN

CFGDEVCONTROLNOSNOOPEN

CFGDEVCONTROLPHANTOMEN

CFGDEVCONTROLURERRREPORTINGEN

CFGDEVICENUMBER[4:0]

CFGDEVSTATUSCORRERRDETECTED

CFGDEVSTATUSFATALERRDETECTED

CFGDEVSTATUSNONFATALERRDETECTED

CFGDEVSTATUSURDETECTED

Tpcicko_CFGDO USERCLK CFGDO[31:0]

Tpcicko_CFGDONE USERCLK CFGRDWRDONEN

Tpcicko_CFGERR USERCLK CFGERRCPLRDYN

Tpcicko_CFGFCN USERCLK CFGFUNCTIONNUMBER[2:0]

Tpcicko_CFGINT USERCLK CFGINTERRUPTDO[7:0]

CFGINTERRUPTRDYN
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Tpcicko_CFGLINK USERCLK CFGLINKCONTOLRCB

CFGLINKCONTROLASPMCONTROL[1:0]

CFGLINKCONTROLCOMMONCLOCK

CFGLINKCONTROLEXTENDEDSYNC

Tpcicko_CFGOFF USERCLK CFGTOTURNOFFN

Tpcicko_CFGSTATE MGTCLK CFGLTSSMSTATE[4:0]

USERCLK CFGPCIELINKSTATEN[2:0]

Tpcicko_DBG USERCLK DBGBADTLPLCRC

DBGBADTLPSEQNUM

DBGMLFRMDLENGTH

DBGMLFRMDMPS

DBGMLFRMDTCVC

DBGMLFRMDUNRECTYPE

DBGREGDETECTEDCORRECTABLE

DBGREGDETECTEDFATAL

DBGREGDETECTEDNONFATAL

DBGREGDETECTEDUNSUPPORTED

DBGURNOBARHIT

DBGURPOISCFGWR

DBGURUNSUPMSG

Tpcicko_ENA USERCLK CFGCOMMANDBUSMASTERENABLE

CFGCOMMANDIOENABLE

CFGCOMMANDMEMENABLE

CFGDEVCONTROLENABLERO

CFGINTERRUPTMMENABLE[2:0]

Tpcicko_MSG USERCLK CFGINTERRUPTMSIENABLE
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Tpcicko_PIPE MGTCLK PIPEGTTXELECIDLEA

PIPEGTTXELECIDLEB

PIPERXPOLARITYA

PIPERXPOLARITYB

PIPERXRESETA

PIPERXRESETB

PIPETXCHARDISPMODEA[1:0]

PIPETXCHARDISPMODEB[1:0]

PIPETXCHARDISPVALA[1:0]

PIPETXCHARDISPVALB[1:0]

PIPETXCHARISKA[1:0]

PIPETXCHARISKB[1:0]

PIPETXDATAA[15:0]

PIPETXDATAB[15:0]

PIPETXRCVRDETA

PIPETXRCVRDETB

Tpcicko_PWR MGTCLK PIPEGTPOWERDOWNA[1:0]

PIPEGTPOWERDOWNB[1:0]

USERCLK CFGDEVCONTROLAUXPOWEREN

Tpcicko_RXRAM USERCLK MIMRXRADDR[11:0]

MIMRXREN

MIMRXWADDR[11:0]

MIMRXWDATA[34:0]

MIMRXWEN

Tpcicko_SCANOUT USERCLK SCANOUT[4:0]
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Tpcicko_STATUS USERCLK DBGBADDLLPSTATUS

DBGBADTLPSTATUS

DBGDLPROTOCOLSTATUS

DBGFCPROTOCOLERRSTATUS

DBGMLFRMDTLPSTATUS

DBGPOISTLPSTATUS

DBGRCVROVERFLOWSTATUS

DBGRPLYROLLOVERSTATUS

DBGRPLYTIMEOUTSTATUS

DBGURSTATUS

Tpcicko_TRN USERCLK TRNFCCPLD[11:0]

TRNFCCPLH[7:0]

TRNFCNPD[11:0]

TRNFCNPH[7:0]

TRNFCPD[11:0]

TRNFCPH[7:0]

TRNLNKUPN

TRNRBARHITN[6:0]

TRNRD[31:0]

TRNREOFN

TRNRERRFWDN

TRNRSOFN

TRNRSRCDSCN

TRNRSRCRDYN

TRNTBUFAV[5:0]

TRNTCFGREQN

TRNTDSTRDYN

TRNTERRDROPN

Tpcicko_TXRAM USERCLK MIMTXRADDR[11:0]

MIMTXREN

MIMTXWADDR[11:0]

MIMTXWDATA[35:0]

MIMTXWEN

Table I-1: PCIE_A1 Timing Parameters (Cont’d)

Name Clock Domain Signal Grouping

http://www.xilinx.com


248 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG654 (v3.0) April 19, 2010

Appendix I: PCIE_A1 Timing Parameter Descriptions

http://www.xilinx.com

	Spartan-6 FPGA Integrated Endpoint Block for PCI Express
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Documentation
	Additional Resources

	Introduction
	About the Core
	System Requirements
	Recommended Design Experience
	Additional Core Resources

	Core Overview
	Overview
	Protocol Layers
	Transaction Layer
	Data Link Layer
	Physical Layer
	Configuration Management

	PCI Configuration Space
	Core Interfaces
	System Interface
	PCI Express Interface

	Transaction Interface
	Common TRN Interface
	Transmit TRN Interface
	Receive TRN Interface

	Configuration Interface
	Error Reporting Signals

	Licensing the Core
	Getting Started Example Design
	Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Generating the Core
	Simulating the Example Design
	Setting up for Simulation
	Running the Simulation

	Implementing the Example Design
	Using the ISE Project Navigator GUI Tool

	Directory Structure and File Contents
	Example Design
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/dsport
	simulation/functional
	simulation/tests
	<component name>/source


	Generating and Customizing the Core
	Customizing the Core through the CORE Generator Software
	Basic Parameter Settings
	Base Address Registers
	PCI Registers
	Configuration Register Settings
	Interrupt Capabilities
	Power Management Registers
	PCI Express Extended Capabilities
	Advanced Settings


	Designing with the Core
	TLP Format on the Transaction Interface
	Transmitting Outbound Packets
	Receiving Inbound Packets
	Design with Configuration Space Registers and Configuration Interface
	Registers Mapped Directly onto the Configuration Interface
	Device Control and Status Register Definitions
	Accessing Additional Registers through the Configuration Port
	User Implemented Configuration Space

	Additional Packet Handling Requirements
	Generation of Completions
	Tracking Non-Posted Requests and Inbound Completions

	Reporting User Error Conditions
	Error Types

	Flow Control Credit Information
	Using the Flow Control Credit Signals

	Power Management
	Active State Power Management
	Programmed Power Management

	Generating Interrupt Requests
	MSI Mode
	Legacy Interrupt Mode

	Clocking and Reset of the Integrated Endpoint Block Core
	Reset
	Clocking


	Core Constraints
	Contents of the User Constraints File
	Part Selection Constraints: Device, Package, and Speed Grade
	User Timing Constraints
	User Physical Constraints
	Core Pinout and I/O Constraints
	Core Physical Constraints
	Core Timing Constraints

	Required Modifications
	Device Selection
	Core I/O Assignments
	Core Physical Constraints
	Core Timing Constraints
	Relocating the Integrated Endpoint Block
	Supported Core Pinouts

	FPGA Configuration
	Configuration Terminology
	Configuration Access Time
	Configuration Access Specification Requirements

	Board Power in Real-World Systems
	Hot-Plug Systems

	Recommendations
	FPGA Configuration Times for Spartan-6 Devices
	Sample Problem Analysis
	Workarounds for Closed Systems


	Known Restrictions
	Master Data Parity Error Bit Set Incorrectly
	Area of Impact
	Detailed Description
	Comments

	Non-Posted UpdateFC During PPM Transition
	Area of Impact
	Detailed Description
	Comments


	Programmed Input/Output Example Design
	System Overview
	PIO Hardware
	Base Address Register Support
	TLP Data Flow
	PIO File Structure
	PIO Application
	Receive Path
	Transmit Path
	Endpoint Memory

	PIO Operation
	PIO Read Transaction
	PIO Write Transaction
	Device Utilization

	Summary

	Root Port Model Test Bench
	Architecture
	Simulating the Design
	Test Selection
	VHDL Test Selection
	Verilog Test Selection
	VHDL and Verilog Root Port Model Differences

	Waveform Dumping
	VHDL Flow
	Verilog Flow

	Output Logging
	Parallel Test Programs
	Test Description
	Test Program: pio_writeReadBack_test0

	Expanding the Root Port Model
	Root Port Model TPI Task List


	Migration Considerations
	Integrated PHY
	System Clocking and Reset
	Interface Changes
	Streaming Signal Added
	TRN Transmit Destination Discontinue Removed
	TRN Buffer Available Size Change
	CMM Arbitration
	TRN Credit Buses Additional Functionality
	Configuration Error Completion Ready
	Configuration Error Locked
	Removed Configuration Signals
	Hot Reset

	Block RAM Settings
	Signal Change Summary

	Debugging Designs
	Finding Help on Xilinx.com
	Documentation

	Contacting Xilinx Technical Support
	Debug Tools
	Example Design
	ChipScope Pro Tool
	Link Analyzers
	Third-Party Software Tools

	Debug Ports
	Using the Debug Ports

	Hardware Debug
	FPGA Configuration Time Debug
	Link is Training Debug
	Data Transfer Failing Debug
	Identifying Errors
	Non-Fatal Errors
	Next Steps

	Simulation Debug
	ModelSim Debug
	Next Step


	Managing Receive-Buffer Space for Inbound Completions
	General Considerations and Concepts
	Completion Space
	Maximum Request Size
	Read Completion Boundary

	Methods of Managing Completion Space
	The LIMIT_FC Method
	The PACKET_FC Method
	The RCB_FC Method
	The DATA_FC Method


	Board Design Guidelines
	Overview
	Example PCB Reference
	Board Stackup
	SP605 Example
	Power Supply Design

	Data Routing Guidelines
	Breakout from FPGA BGA
	Microstrip vs. Stripline
	Plane Reference and Splits
	Bends
	Propagation Delay
	Intrapair Skew
	Symmetrical Routing
	Vias
	Trace Impedance
	Trace Separation
	Lane Polarity Inversion
	AC Coupling
	Data Signal Termination
	Additional Considerations for Add-In Card Designs

	Reference Clock Considerations
	Jitter
	Trace Impedance
	Termination
	AC Coupling
	Fanout
	Sideband PCI Express Signals
	Summary Checklist


	PCIE_A1 Port Descriptions
	Clock and Reset Interface
	Transaction Layer Interface
	Block RAM Interface
	GTP Transceiver Interface
	Configuration Management Interface
	Management Interface Ports
	Error Reporting Ports
	Interrupt Generation and Status Ports
	Power Management Ports
	Configuration Specific Register Ports
	Miscellaneous Configuration Management Ports

	Debug Interface Ports

	PCIE_A1 Attribute Descriptions
	PCIE_A1 Timing Parameter Descriptions


